
�
 Copyright 2003

Michael John Safoutin

A Methodology for Empirical Measurement of Iteration

in Engineering Design Processes

Michael John Safoutin

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2003

Program Authorized to Offer Degree: Mechanical Engineering

University of Washington

Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Michael John Safoutin

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Chair of Supervisory Committee:

Cynthia J. Atman

Reading Committee:

Cynthia J. Atman

Vipin Kumar

Robert P. Smith

Date:

In presenting this dissertation in partial fulfillment of the requirements for the Doctoral

degree at the University of Washington, I agree that the Library shall make its copies

freely available for inspection. I further agree that extensive copying of the dissertation is

allowable only for scholarly purposes, consistent with "fair use" as prescribed in the U.S.

Copyright Law. Requests for copying or reproduction of this dissertation may be referred

to ProQuest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-

1346, to whom the author has granted "the right to reproduce and sell (a) copies of the

manuscript in microform and/or (b) printed copies of the manuscript made from

microform."

Signature

Date

University of Washington

Abstract

A Methodology for Empirical Measurement of Iteration

in Engineering Design Processes

Michael John Safoutin

Chair of the Supervisory Committee:

Professor Cynthia J. Atman

Industrial Engineering

Empirical study of the engineering design process typically involves the observation of

design activity and the measurement and analysis of its features. An activity as complex

as design possesses a wide variety of features, many of which are prominent and likely to

attract research attention. The iterative feature of design activity is particularly

prominent, but few measures are available to support its empirical study. In response to

this need, measures of design iteration are developed that enable objective distinctions to

be drawn among empirically observed design processes in terms of potentially

meaningful aspects of their iterative character. A conceptual framework leads to the

recognition of several varieties of design iteration and the selection of one variety of

particular interest to design research. Several measures for this variety of iteration are

developed and implemented through the application of metrics to timeline depictions of

the design process. A data collection instrument is then developed and used to capture

empirical data representing the design processes of two groups of subjects individually

solving a design problem. The measures are then applied to the data, resulting in profiles

of the iterative character of each observed process and the grouping of subjects into

similar groups. The validity of the measures is supported by showing that the result of

their application to each group is comparable and that their measurements are consistent

with expectations regarding the nature of the design processes being observed.

i

TABLE OF CONTENTS

Page

List of Figures ... v

List of Tables .. vii

Preface... ix

1 Introduction .. 1

 1.1 Observation and Analysis of the Design Process... 2

 1.2 Need for Measures of Key Features of Design .. 3

 1.3 The Iterative Feature of Design ... 4

 1.4 Can Design Iteration Be Measured? .. 6

 1.5 Goals and Methodology ... 7

2 Literature Review .. 11

 2.1 Can Iteration Currently Be Recognized? ... 12

 2.1.1 Concepts and Definitions of Iteration .. 12

 2.1.2 Need for Operational Definitions... 13

 2.2 Can Iteration Currently Be Measured? .. 14

 2.2.1 Matrix Representations .. 15

 2.2.2 Can Matrix Representations Measure Iteration?.. 16

 2.2.3 Timelines.. 17

 2.2.4 Can Timelines Measure Iteration? ... 20

 2.3 Summary: Need for Operational, Objective, and Relevant Measures 22

3 Conceptual Framework ... 23

 3.1 Nature of Processes .. 23

 3.1.1 Goals, Actions, and Outcome .. 23

 3.1.2 Processes of Design ... 24

 3.2 Repetition Iteration .. 24

 3.3 Progression Iteration .. 27

 3.4 Contrasting Repetitive and Progressive Approaches ... 29

 3.4.1 Task Complexity .. 30

 3.4.2 Early Information Availability ... 30

ii

Page

 3.4.3 Opportunity for Feedback .. 31

 3.5 Feedback Iteration .. 33

 3.6 Selecting an "Iteration" to Measure ... 33

 3.6.1 Criteria for Selection: Significance as an Independent Variable 34

 3.6.2 How Significant is Repetition Iteration?.. 35

 3.6.3 How Significant is Progression Iteration? ... 37

 3.6.4 How Significant is Feedback Iteration? ... 38

 3.7 Conclusion: Develop Measures for Feedback Iteration 40

4 Measures of Iteration ... 41

 4.1 A Model of Design.. 42

 4.1.1 An Information Processing Model of Design Activity 43

 4.1.2 A Parametric Model for the Design Task .. 44

 4.2 Timeline Schemas ... 46

 4.2.1 Assimilation-Feedback (A-F) Timeline ... 46

 4.2.2 A-F-DP and A-F-FR Timelines ... 48

 4.3 Patterns and Base Metrics ... 49

 4.3.1 Timeline Information Attributes .. 50

 4.3.2 Episode Patterns ... 52

 4.3.3 Selecting Patterns of Interest.. 55

 4.3.4 Patterns as a Basis for Measures .. 59

 4.4 Measures of Iterative Character .. 60

 4.4.1 Feedback Quality Measure... 60

 4.4.2 Assessing Feedback Quality .. 63

 4.5 Drawing Comparisons Among Processes ... 65

 4.5.1 Grouping by Similarity in Pattern .. 67

 4.5.2 Ordering Groups by Similarity in Feedback Quality 70

 4.6 Conclusion .. 71

5 A Data Collection Instrument ... 73

 5.1 Selecting a Subject Design Task .. 73

 5.2 Virtual Car Educational Software.. 76

iii

Page

 5.2.1 The Design Task .. 76

 5.2.2 Identifying Design Parameters ... 89

 5.2.3 Identifying Assimilation and Feedback ... 90

 5.3 Instrumentation .. 90

 5.3.1 Codes for Design Parameters and Feedback Modes 92

 5.3.2 The Design Portfolio File... 93

 5.4 Deploying the Instrumented Virtual Car ... 95

6 Data Collection ... 96

 6.1 Deployment of Instrument ... 96

 6.2 Data Collected .. 98

 6.3 Data Preparation... 99

 6.4 Resultant Data Sets .. 100

7 Data Analysis .. 103

 7.1 Basis for Evaluating Validity ... 103

 7.2 Analysis Procedures ... 104

 7.3 Description of Results .. 107

 7.3.1 Discrete Feedback Quality ... 107

 7.3.2 Categorization Based on Discrete Feedback Quality 109

 7.4 Comparison of Results to Expectations .. 110

 7.4.1 Expectation 1: Both Groups Design Nonrandomly 111

 7.4.2 Expectation 2: Both Groups Design Similarly... 113

 7.4.3 Expectation 3: Both Groups Favor Type A Iteration 114

 7.4.4 Effect of Combining Groups .. 115

 7.5 Summary ... 116

8 Conclusions ... 118

 8.1 Validity of Measure ... 118

 8.2 Utility of Measure .. 119

 8.3 Application to Other Design Tasks .. 120

 8.4 Future Work ... 123

iv

Page

 8.5 Conclusion ... 126

References ... 127

Appendix A: Essay Questions and Homework Assignment... 137

Appendix B: University of Washington Consent Form.. 142

Appendix C: Timeline Coding Notes.. 144

Appendix D: Iterativity Ratio ... 148

Appendix E: Computed Version of Feedback Quality Measure..................................... 152

Appendix F: Alternative Definitions of a Random Process.. 162

v

LIST OF FIGURES

Figure Number Page

1.1 Study plan .. 9

2.1 Example matrix representation .. 16

2.2 Example timeline representation.. 18

2.3 Events categorized by activity class... 18

2.4 Events categorized by design phase ... 19

3.1 Numerical integration performed as a repetitive incremental process..................... 26

3.2 Numerical integration performed progressively .. 28

3.3 Incremental and progressive approaches to writing... 29

3.4 Incremental and progressive approaches to design .. 29

3.5 Repetitive and progressive numerical algorithm with feedback 32

4.1 Parametric model of the design problem ... 45

4.2 Information processing, parametric model of design... 45

4.3 Example A-F timeline .. 46

4.4 Assimilation and feedback episodes in an A-F timeline .. 47

4.5 Example A-F-DP timeline ... 48

4.6 Example A-F-FR timeline .. 49

4.7 Unconfounded parameter quantity pattern... 56

4.8 Confounded parameter quantity pattern... 56

4.9 Stationary parameter identity patterns ... 57

4.10 Traveling parameter identity patterns .. 58

4.11 Feedback quality categorization... 61

4.12 Type A (quantity single, identity same) ... 62

4.13 Type D (quantity single, identity different) ... 62

4.14 Type B (quantity multiple, identity same) ... 62

4.15 Type C (quantity multiple, identity different).. 63

4.16 Example feedback quality profile .. 64

4.17 Feedback quality profiles for processes of Figures 4.12 through 4.15 64

4.18 Example feedback quality profiles with X+yz naming.. 67

4.19 Portion of the feedback quality classification format .. 71

5.1 Functional components of a Virtual Car .. 77

vi

Figure Number Page

5.2 Paper parts-cutting templates and finished parts.. 79

5.3 Fully assembled Virtual Car .. 79

5.4 Design mode .. 81

5.5 Build mode ... 82

5.6 Analyze mode .. 83

5.7 Simulate mode.. 84

5.8 Race mode .. 85

5.9 Preview mode... 86

5.10 Print interface ... 87

5.11 Printed report.. 87

5.12 Printed templates for Racer design .. 88

5.13 Virtual Car design parameters.. 89

5.14 Interface elements involved with assimilation and feedback................................. 90

5.15 Feedback opportunities in Virtual Car ... 91

7.1 Sample A-F-DP timelines for subjects A368 and Y318 .. 106

8.1 Examples of within-process variation in feedback quality 124

D.1 Processes with I = 1... 150

D.2 Process with I = 0 .. 150

E.1 Example plot of computed feedback quality ... 153

E.2 Computed feedback quality, Fall 2001 .. 156

E.3 Computed feedback quality, Winter 2002 ... 156

F.1 Expected profile of a random process, base assumption ... 163

F.2 Effect of random choice on single or multiple parameter quantity 164

F.3 Expected parameter quantity for a random process ... 165

F.4 Expected profile of a random process determined by E and p 165

F.5 Expected profile of a random process for E = 2 and p = 24 166

F.6 Expected profile of a random process for E = 1.875 and p = 4 167

vii

LIST OF TABLES

Table Number Page

3-1. Comparison of effectiveness as an independent variable 40

4-1. Accessible information in an A-F-A sequence.. 51

4-2. Accessible information in an F-A-F sequence.. 52

4-3. Episode patterns in an A-F-DP timeline ... 53

4-4. Episode patterns in an A-F-FR timeline ... 54

4-5. Centroids of canonical categories based on X+y naming convention 69

4-6. Quality ranking of canonical categories ... 70

5-1. Design parameters and means of specification... 91

5-2. Codes assigned to design parameters ... 92

5-3. Codes assigned to assimilation events and feedback events 92

5-4. Example excerpt of Design Portfolio file ... 93

6-1. Summary of data from consenting subjects, Autumn 2001.................................... 101

6-2. Summary of data from consenting subjects, Winter 2002...................................... 102

7-1. Feedback quality measurements, Fall 2001 and Winter 2002 107

7-2. Feedback quality profiles, Fall 2001 and Winter 2002... 108

7-3. Feedback quality classification, Fall 2001.. 109

7-4. Feedback quality classification, Winter 2002... 109

7-5. Comparison of percentages in major categories, Fall and Winter 110

7-6. Comparison of frequencies in major categories, Fall and Winter 110

7-7. Observed distribution vs. random expectation, Fall 2001 111

7-8. Observed distribution vs. random expectation, Winter 2002 112

7-9. Comparison of Winter to Fall (expected values) .. 113

7-10. Comparison of Fall A-dominance to random expectation.................................... 114

7-11. Comparison of Winter A-dominance to random expectation 115

7-12. Observed distribution vs random expectation, combined..................................... 115

7-13. Comparison of combined Winter/Fall A-dominance to random 116

E-1. Computed parameter quantity and parameter identity ... 155

E-2. Optimal k-means grouping of computed feedback quality, k=6, Fall 2001........... 159

E-3. Optimal k-means grouping of computed feedback quality, k=8, Fall 2001........... 159

E-4. Optimal k-means grouping of computed feedback quality, k=7, Winter 2002...... 160

viii

Table Number Page

E-5. Optimal k-means grouping of computed feedback quality, k=9, Winter 2002...... 160

F-1. Expected distribution of a randomly designing group, base assumption 163

ix

Preface

This dissertation has a broad scope, beginning with the development of an original

conceptual framework and proceeding with the derivation of new measures of iteration,

development of a data collection instrument, collection of empirical data, and analysis of

the data. The following "road map" may be helpful in navigating the document.

Chapter 1 describes the motivation for pursuing this topic. It points out the

importance of empirical study of the design process and the need it creates for effective

measures of various features of real design processes. The iterative feature of design is

identified as a particularly interesting feature for which measurement methods are not yet

sufficient to support its empirical study. The chapter concludes with an outline of the

goals of the study, a description of similar studies, and description of a basis for

establishing validity of the measures that are to be developed.

Chapter 2 begins by suggesting that empirical study of iteration requires a way to

objectively extract it from empirical data, a task which involves its recognition and its

measurement. A survey of existing literature is focused upon (a) the capability of

existing conceptualizations of iteration to support its recognition, and (b) the capability of

existing measures and representations of iteration to support its empirical measurement.

It establishes the need for a precise conceptualization of iteration that is relevant to the

motivations of empirical research and that can lead to effective measures.

Chapter 3 develops a conceptual framework that provides the groundwork for

effective measures. The framework is based upon an understanding of design as a form

of process. Properties of processes in general and of processes of design are contrasted

and related to patterns of design activity that are commonly described as iterative. This

leads to the recognition of several varieties of design iteration, which are then examined

with respect to their relative degree of interest to experimental research. This judgement

is based on arguments addressing three criteria: potential for variability, potential for

influence on design outcome, and potential for a designer to control this influence in

practice. Feedback iteration is judged to hold the greatest degree of interest, leading to

the decision to focus measures on this variety of iteration.

x

Chapter 4 develops a measure of feedback iteration. It begins by adopting a model of

design as an information processing activity operating with respect to a parametrically

structured design problem. This model suggests several timeline schema for

representation of observed design processes. Among the various event patterns that these

schema can portray, several specific patterns are suggestive of a potential influence on

outcome. These patterns are selected as the basis for a measure of iterative character that

may be applied to timeline data.

Chapter 5 describes an approach by which a design task may be selected and

instrumented in order to collect data sufficient to apply the measure. The approach is

demonstrated in the context of converting an educational design software program called

Virtual Car into a data collection instrument.

Chapter 6 describes how the instrumented software was deployed to collect data from

two groups of subjects.

In Chapter 7, the measure is applied to this data. Evidence for validity of the measure

is presented by showing that the result of its application to each group is comparable, and

that their measurements are consistent with expectations regarding the nature of the

design task that it measures.

Chapter 8 draws conclusions about the utility of the measure in empirical research,

and outlines conditions for application of the measure to the study of other design tasks.

xi

Acknowledgements

First, I would like to acknowledge the encouragement and support of those who

influenced the last few years of my graduate work, which were the most educational and

productive. My thesis advisor, Professor Cynthia J. Atman, acted as an ideal example of

a faculty mentor. I learned a tremendous amount through my involvement with her

research and through working with the people that she has brought together. When my

original thesis advisor left the university, Cindy stepped in as a replacement, even though

the busiest time of her career was about to begin. Her involvement made a unique impact

on the end product and on my capability as a researcher. Professor John Kramlich of

Mechanical Engineering not only introduced me to Cindy at a critical point in my

graduate career, but also provided the opportunity to fulfill my longstanding desire to

teach engineering design, as an instructor of ENGR 100. As a result, for the last three

years my students have provided me with daily encouragement and have continually

nourished my interest in design education and research. My original thesis advisor Rob

Smith, being one of only a few department faculty having a specialty in design research,

made it possible to consider pursuing the topic of this dissertation, and encouraged me to

publish some of my findings early on. He agreed to continue as a committee member

after his departure, and carried his involvement through to the end. Dr. Jennifer Turns

provided me with perspectives on completing a dissertation, being a post-doc, and

pursuing a faculty position. Mary Cook of the College of Engineering spearheaded the

nominations that resulted in my teaching award. And the late Professor Dale Calkins was

an advocate and friend, who inspired me early in my graduate career and made me feel

that my work was valuable. I must also acknowledge my many graduate student friends

from various departments of the university. Although many of them have already come

and gone, their memory persists through their influence on various aspects of this

dissertation. It was through our countless pub conversations that we found ourselves

building an after-hours academic culture that was as close to bohemian as an engineering

student may ever find. Their impact on the encouragement of my philosophical ideas and

on my persistence in applying them to engineering design was profound, and I can only

hope that in my future work I will continue to find and benefit from a similarly

supportive environment.

1

1 Introduction

Engineering design has historically been known as a relatively unstructured art,

compared to the scientific and technological disciplines that support it [Dixon 1987]. But

as design projects in industry have become more complex and increasingly sensitive to

economic and competitive pressures [Williams et al. 1995], questions about the nature of

design activity and how it may be improved have grown in importance. The research

specialty of design theory and methodology (DTM) has experienced rapid growth over

the last twenty years in an effort to respond to these questions. By at least one account,

books and articles on DTM have become the largest single category of publications on

engineering design [Sullivan et al. 1994].

An increasingly large portion of DTM research is empirical [Gero and McNeill 1998].

It has long been observed that independent designers or design teams pursuing the same

design problem may vary significantly in the processes they follow as well as the quality

of their solutions [Braha and Maimon 1998]. This represents an opportunity to seek an

understanding of what makes design processes effective by observing real design

processes and comparing them in terms of their features and their end results. Design

activity, however, is not naturally conducive to empirical study [Dixon 1987],

[Valkenburg and Dorst 1998]. In the words of one researcher, "the study of the

engineering design process is too complex for traditional study and analysis" [Stauffer et

al. 1991]. One of the areas that has required significant attention is the development of

effective methods for the observation and analysis of design processes [Oxman 1995].

1.1 Observation and Analysis of the Design Process

Empirical research is centered around observation of the real world and analysis of

what is observed. For observing design activity, a variety of methods have been

developed or adapted from those used in other fields [Stauffer et al. 1991]. These range

from relatively informal methods, such as direct observation of design teams [Marples

1961], to retrospective methods such as interviews, questionnaires, or design diaries [Ball

2

et al. 1994] that take place after design activity, to real-time protocol methods which

meticulously record verbal or other evidence of design activity as it takes place [Stauffer

et al. 1987, 1991], [Ericsson and Simon 1993], [Dwarakanth et al. 1996].

Observation methods provide a means to collect evidence of design activity, but they

must be supplemented by effective methods for analysis of the data they collect. An

investigator typically wishes to focus analysis on specific features of the design process,

perhaps those that represent dependent or independent variables relating to an

experimental hypothesis, or those that may inform a specific research question. The

features of interest must then be extracted from other activities that are likely to be

represented in the raw data. The task of extraction calls for a way to reliably recognize

the feature where it is represented in the data, and apply suitable measures to it. For

example, if one seeks to relate a feature such as the "systematic nature" of a design

process to another feature such as "degree of exploration of the solution space", it

requires some way to recognize and measure both features in an empirical setting.

Some of the simpler features of design activity are relatively straightforward to

recognize and measure, but others present a greater challenge. Features such as time

spent designing, time spent in specific activities, and patterns of activities over time have

been successfully extracted using verbal protocol methods [Chimka and Atman 1998].

But many other features that are equally familiar, interesting, and potentially informative

lack a sufficiently precise conceptualization to allow their reliable extraction. For

example, when attention was focused on design process features such as design strategy

[Ball et al. 1994],[Fricke 1996] and decision path [Dwarakanth and Wallace 1995], these

features first had to undergo more formal definition in order to facilitate their recognition,

and new constructs had to be developed to support their measurement. The study of

many other features of design activity encounters the same difficulty. As Love has

pointed out, many of the core terms associated with design, including the term design

itself, have developed so many implicit, imprecise, and overlapping definitions that "they

potentially include so much that they no longer clearly define anything" [Love 2002,

p.355]. This situation presents a challenge for progress in empirical research on design.

3

1.2 Need for Measures of Key Features of Design

As research activity in DTM generates an ongoing demand for methods to "get at"

various features of the design process, new constructs and representations are continually

being developed [Smith and Browne 1993, p. 1215]. Investigators who are concerned

with a specific feature of interest may encounter the burden of developing and validating

a means for its measurement before a specific hypothesis or research question regarding it

may even be addressed. This prerequisite task, which typically is not trivial, consumes

resources and may discourage research curiosity in areas that might be profitable to

explore. Furthermore, the development of constructs on an ad hoc basis encourages a

proliferation of alternative constructs whose generality and applicability outside of their

original context may remain unclear. For example, the abovementioned constructs for

design strategy and decision path were not explicitly validated by their authors for use

beyond the studies for which they were developed. This and their relative obscurity

suggests that others may be led to develop alternatives that they feel to be better adapted

to their own specific purposes or perspectives. When different studies involving similar

features of design do not share the same measurement constructs, it becomes difficult to

compare them effectively and generalize from their respective findings.

The development of general, robust methods for the recognition and measurement of

key features of design activity is thus an important goal unto itself. That is the goal of

this research.

Design activity has many discernible features. It is difficult to judge a priori which

features may eventually be demonstrated to carry the most valuable insights toward

design outcome or other profitable issues. However, it can be argued that the best

candidates for study are likely to share several attributes. First, features that are

particularly familiar and prominent to those familiar with design activity are likely to

attract a proportional degree of research curiosity. Second, the prominence of a feature

suggests a potential significance to design outcome or other issues of practical interest.

Finally, features that fit this description but have yet to achieve an established and

effective means of recognition and measurement are obvious candidates. It may be

4

argued that any feature that is familiar, prominent, and difficult to extract from empirical

data deserves attention toward the development of effective methods for its measurement.

1.3 The Iterative Feature of Design

One of the most familiar and prominent features of design activity is its iterative

character. The iterative quality of design is widely recognized by designers (e.g. [Braha

and Maimon 1997], [Urban and Hauser 1993, p. 173]), is acknowledged in a broad cross

section of design research (e.g. [Madanshetty 1995], [Cohen et al. 1994], [Nukala et al.

1995]), and is portrayed prominently in nearly every model of the design process (e.g.

[Finger and Dixon 1989], [Evbuomwan et al. 1996]) and textbook definition of design

(e.g. [Beakley et al. 1986], [Dieter 1991], [Eide et al. 1998]). Articles on engineering

design frequently allude to its iterative character in literally the first paragraph (e.g.

[Kusiak and Larson 1995], [Dwarakanth and Wallace 1995]).

Motivations for studying iterative behavior are not hard to find. For example, in

design organizations, a majority of development time and cost consists of what has been

described as iterative activity [Osborne 1993], [Cooper 1993]. If this is true, then the

iterative character of design represents a path for research toward a fuller understanding

of design activity and ways to improve its outcome. Just as significantly, guidelines are

needed to help manage iterative activity in practice. Wileden [1986] called for tools to

guide iteration in software development processes, recognizing several needs including

the need to make best use of information yielded through iterations, to determine when

one should embark on an iteration, and to identify rework resulting from a proposed

change. Curtis [1986] called for management tools to reduce the number of iterations in

software design projects. Cooper [1993] calls for management methods to help plan,

monitor, and reduce the magnitude and duration of rework, which is commonly

associated with iteration. Eppinger et al. [1997] call for tools to "recognize and manage

the iterative nature of the design process" leading to direct indications for managerial

control, such as co-locating persons involved with highly iterative tasks.

5

Unfortunately, prevailing attitudes about the place of iteration in design suggest that

these wishes are still far from being met. Little progress has been made toward achieving

an understanding of iteration that is sufficient to provide a basis for answering these calls.

In its place, one commonly encounters what could be described as a zero-iteration ideal,

a default presumption that a non-iterative or minimally-iterative design process is always

most desirable, if it could only be achieved. This presumption appears to be widespread

and can be found in many places. For example, a passage in an NSF report on research

opportunities in engineering design [NSF 1996, p. 5] states:

"If the initial design is poor, several design-analysis iterations are necessary before a

satisfactory design is found; the ideal goal is to eliminate iteration and have the design meet

the specifications on the first pass",

and in his landmark text The Principles of Design, Suh [1990, p. 32] mentions:

"The most desirable iteration cycle, next to no iteration, is the reiteration at the

conceptual stage of the design process itself".

Admittedly, these remarks are rhetorical and are probably not intended as dictums,

but they do suggest that the prevailing understanding of iteration focuses primarily on its

negative aspects, and has yet to embrace a more balanced perspective that includes

positive aspects as well. Empirical research is a natural path toward submitting the zero-

iteration ideal to the rigorous examination it deserves, perhaps leading to a perspective

that is more capable of providing concrete guidance for management of iterative

processes.

A likely focus of empirical research on design iteration would concern relationships

between the iterative character of a design process and its outcome. The various calls for

management tools that were outlined above imply that some sort of relation between

iteration and design outcome is commonly assumed to exist; for example, according to

Browning [1998], viewing a development process from the perspective of its iterative

character may help "capture and quantify drivers of cost, schedule, and performance

variability".

6

In order to capture such relationships on which tools might be built, an investigator

would first need to be able to capture the iterative character of observed design processes,

and then apply measures that allow individual processes to be compared in terms of

relevant aspects of their iterative character.

1.4 Can Design Iteration Be Measured?

Design iteration has yet to form a consistent, precise and widely accepted

conceptualization that would support the development of objective and reliable measures.

It lacks an established theoretical or operational definition, and its lay definitions are

imprecise and inconsistent. Iteration has been associated, equated, or used

interchangeably with a diverse set of implicitly related terms such as repetition [Curtis

1986, Eppinger et al. 1997], refinement [Urban and Hauser 1993, p. 171], rework

[Cooper 1993], redesign [Eisenhardt and Tabrizi 1995, Terwiesch and Loch 1999],

backtracking [Tully 1986, Ullman et al. 1988], recursion [Ward 1990], patching [Ullman

et al. 1988], and the need to "try again" [Thomke et al. 1998, Thomke 1998]. These

terms and references make sense in their original contexts, but taken together they

delineate a conceptual space that is too broad to readily suggest operational strategies for

effectively recognizing and measuring iteration in an empirical setting.

Under these conditions, research that has attempted to relate iteration to outcome has

not achieved the degree of conclusiveness that would suggest clear advice for designers.

For example, with regard to design time, Smith et al. [1992] found that students who

followed a "standard" strategy recommended in the instructions to a design-based game

(a strategy described as relatively iterative) took more time to find a solution of equal

quality than those who used a reordered task strategy meant to minimize the potential for

iteration. Another study by Terwiesch and Loch [1999] also related the presence of fewer

iterations to reduced design time. However, Eisenhardt and Tabrizi [1995] had drawn the

opposite conclusion in showing that development processes having more iterations

tended to require less time, even though both studies had employed the same definition of

iteration.

7

Studies such as these are attempting to relate an independent variable called

"iteration" to a dependent variable such as "design time" or "design quality". But does

the independent variable "iteration" measure the same phenomenon in each study?

Although the studies of Terwiesch and Loch [1999] and their colleagues Eisenhardt and

Tabrizi [1995] share the same conceptualization of iteration, one explanation for their

contradictory results might be that this conceptualization includes somewhat different

types of specific iterative behaviors that have different effects on design time. Similarly,

the concurrence of Smith et al. [1992] with Terwiesch and Loch [1999] should be taken

with a caveat because the two studies define and capture iteration in different ways (the

first by means of a protocol analysis of revision operations in a design game, and the

second by a survey of industry designers who were provided with a conceptual definition

of iteration). While either basis is reasonable, it remains unclear whether they capture the

same sort of "iteration". Studies that are affected by this issue are unlikely to contribute

as effectively as they might toward building a cohesive literature on iteration because

they lack comparability. One simply cannot be certain that they all measure the same

thing.

The prospect of "getting at" the iterative character of observed design processes in a

way that supports comparability of findings continues to pose a methodological hurdle to

empirical researchers. Existing conceptualizations do not support the ability to draw

objective distinctions among design processes in terms of relevant aspects of their

iterative character. An objective measure of design iteration that may be employed for

this purpose is an imperative for effective empirical investigation of its significance to

design activity.

1.5 Goals and Methodology

This study is concerned with the question,

How may one objectively draw distinctions among observed design

processes in terms of relevant aspects of their iterative character?

8

This study seeks to develop and validate measures of iteration that are suitable for use

in empirical research. Any experimental study that would seek to relate iteration to

outcome would first call for an effective means to measure iteration as an independent

variable. This study is therefore concerned with developing measures that may be

applied to this purpose.

The intent of this study is comparable to that of other studies that have sought to

characterize a specific feature of the design process, develop means for its measurement,

and provide evidence for validity of the measure. For example, Goel [1994] developed a

conceptual framework concerning design and non-design problems and hypothesized a

set of invariant features specific to design problems. Representations of empirically

captured design and non-design processes were then developed, and used to support the

contentions of the conceptual framework that design and non-design processes are

different in the ways asserted. Validity of the framework and representation method was

supported by demonstrating that they led to useful and explanatory results. In another

study, Gunther and Ehrlenspiel [1999] sought to measure the systematic nature of an

observed design process. They captured and represented the design processes of three

design teams who were variously instructed with regard to adherence to a systematic

model of the design process. Their representations successfully distinguished the

relatively systematic process of the group that was told to design systematically from the

less systematic processes of the other groups. Validity of the representation method was

supported by demonstrating agreement between the differences that were expressed by

the representations and the differences that were expected to result from differences in

instruction. Another example is found in Austin et al. [2001], where a conceptual

framework was developed to suggest a classification of activities involved in conceptual

design tasks. Representation methods based on the activity categories of the framework

were then employed to map the conceptual design activity of a group of subject design

teams. The framework found initial validation in finding that the great majority of

activity observed in the experimental task was successfully classified within the

categories of the conceptual framework.

9

The design of the current study is depicted schematically in Figure 1.1. It consists of

three major stages: development of measures of iteration, application of the measures to

empirical data, and validation of the measures.

The development phase consists of the following components. Existing

conceptualizations of the iterative feature of design activity are reviewed and compared,

leading to the development of a conceptual framework that formally defines several

varieties of iteration and selects one variety that is judged to have the most relevance to

the goal of relating iteration to outcome. Measures are then developed that may be

applied to empirical data. A data collection instrument is then developed with which to

capture the design processes of subjects conducting an individual design task.

Figure 1.1. Study plan

The application phase consists of using the instrument to gather two data sets from

two groups of subjects, and application of a selected measure to the data. This phase

results in two sets of design processes that have been profiled by application of the

measure, allowing comparisons to take place within each group and between the two

groups.

10

The measure is then validated by evaluating its performance with respect to the two

data sets. One perspective on the issue of validating a measure suggests that validity is

not proven per se but is supported by a validity argument, which consists of supporting

evidence and explanatory rationale that accumulates over time [Cronbach 1988]. In this

study, a foundation for a validity argument is built upon evidence that the measure has

replicably provided measurements that are consistent with what would be expected given

the nature of the assigned task and the subjects. This leads to the conclusion that the

measure was effective at measuring real differences in the iterative character of the

processes to which it was applied, and provides research utility in its ability to identify

and quantify such differences in an objective manner.

11

2 Literature Review

Calls for management tools to assist design activity might be answered by identifying

relationships between influential features of a design process and its outcome. Such

relationships are presumed to operate behind many well accepted design formulations.

For example, prescriptive models of design are an expression of a presumed relationship

between some aspect of the process by which design is pursued, and some aspect of

outcome, such as time to completion [Duffy and Salvendy 1999, Calantone and di

Benedetto 2000], design cost in terms of money or time [Pahl and Beitz 1988], [Delaney

1997], or the quality of the product delivered [Taguchi 1986], [Suh 1990].

The iterative aspect of process is simply one aspect through which the influence of

process on outcome might operate. If it does, then those seeking to improve their design

process would do well to learn how to manage iteration to best effect. Although

prescriptive models of design provide a variety of guidance for the planning and

execution of the design process, they provide little specific guidance for managing its

iterative character. A research plan toward this goal might consist of the following:

- Empirical observation of real design processes,

- Measurement of relevant aspects of their iterative character,

- Drawing of distinctions among the processes based on these measures,

- Relation of these distinctions to the respective outcomes of each process.

An ideal environment for this effort would fulfill the following "wish list":

- A reliable and objective measure of iterative character is available,

- A plausible argument exists to suggest that the sort of distinctions in

iterative character that the measure describes relate to design outcome, and

- The measure is applicable to a variety of design problems, so that

findings may be replicated in different settings.

12

Effective measures are key to empirical study of iteration. A key component of its

measurement is its recognition, in order that it may be captured and subjected to

measurement. The remainder of this chapter reviews current knowledge related to the

recognition and measurement of the iterative character of observed design processes.

2.1 Can Iteration Currently Be Recognized?

In order to recognize any feature of design activity, one must begin with a clear

concept of the feature itself. A broad variety of conceptualizations of iteration have been

expressed in the design literature.

2.1.1 Concepts and Definitions of Iteration

One first encounters descriptions of iteration in textbook models and definitions of

the design process, nearly all of which feature prominent iterative loops that link several

distinct stages [e.g. Pahl and Beitz 1988, Cross 1989]. Sometimes these loops are likened

to a feedback control mechanism [e.g. Taguchi 1986, Suh 1990]. Iteration is typically

described as an inevitable correction and revision process and illustrated by examples of

design errors and delays.

A sample of articles that touch upon the iterative aspect of design reveals a number of

more specific perspectives. Some focus on perceived attributes of iterative activity, such

as its obvious repetitive aspect [Curtis 1986, Eppinger et al. 1997] in which one is

frequently seen to "try again" [Thomke et al. 1998]. Others focus on the apparent

function of iterative activity, associating it with the refinement of a design [Urban and

Hauser 1993, p. 171]. Still others find it useful to focus on specific manifestations of

iterative activity such as rework [Cooper 1993] or redesign [Eisenhardt and Tabrizi 1995,

Terwiesch and Loch 1999]. Others have associated iteration with specific behaviors such

as backtracking [Tully 1986], patching [Ullman et al. 1988], recursion [Ward 1990], and

transitioning among classes of design activities [Atman et al. 1999], [Adams et al. 2001].

Several distinct varieties of iteration have been recognized, based on criteria such as

whether the iteration was expected or unexpected, or whether it occurred in a parallel or

13

serial manner [Smith et al. 1992], [Smith and Eppinger 1993, 1997]. Similar distinctions

have formed the basis of at least one classification of iteration varieties [Safoutin and

Smith 1998].

Conceptual definitions of iteration can often be found in such work. Gebala and

Eppinger [1991] define iteration as "the revision of decisions which had been made using

incomplete or imperfect information". Nukala et al. [1995] and Eppinger et al. [1997]

define it as "the repetition of activities to improve an evolving design". Ford and Sterman

[1998] define it as "work on tasks to make changes subsequent to their initial

completion". Adams [2001] defines it as "a goal-directed process that utilizes reasoning

processes and strategies to gather and filter information about the problem, monitor

progress, and inform the generation or revision of possible solutions". While these

definitions seem generally agreeable, they do not readily suggest efficient ways to

identify events that meet these definitions.

2.1.2 Need for Operational Definitions

The problem of capturing a variable that is to be measured may be understood as one

of finding an effective operational definition. In contrast to a theoretical (or conceptual)

definition, which defines a variable in relatively abstract terms, an operational definition

is one that defines a variable "in terms of the operations necessary to measure it in any

concrete situation" [Rosenthal and Rosnow 1984].

Existing definitions of iteration such as those reviewed above are primarily theoretical

and as such do not provide sufficient conditions for the application of measurement.

They tend to be either too specific to apply universally or too general to apply efficiently.

For example, Eisenhardt and Tabrizi [1995] gather data about iteration via a

questionnaire in which iteration is defined as the redesign of ten percent of a product’s

parts. Like similar definitions, it is effective in its specific context but is too specific to

apply to many others, such as those in which design of discrete parts is not involved. A

specific definition is also likely to be too narrow to apply universally. In a closely related

study, Terwiesch and Loch [1999] use the same definition and point out that it excludes

14

activities such as "debugging", which most would describe as an iterative activity. On the

other hand, a more general definition may exclude less, yet isolate less, meaning that

recognition is likely to be more laborious. For example, Adams [2001] used a conceptual

definition of iteration to develop coding rules for interpreting design stage transitions in

verbal protocol data as iterations. Although the rules and the definition on which they

were based provided a way to recognize iterations quite effectively, application of the

rules still required a laborious process of manual coding.

In the field of software design, Tully [1986] provides a relatively precise definition of

iteration that begins to approach our criteria for operational measurement but

unfortunately has shortcomings when applied to an engineering design context. Defining

iteration, the definition refers to anything that decomposes into "repeated operations

acting on and/or producing repetitive information" and has a "clearly definable

termination condition". Several examples are provided: "entering named objects into a

data dictionary", "compiling a set of program modules", and "reaching agreement in

discussion of requirements with end users". Examination of these three examples reveals

that each is quite different in its potential influence on outcome. Entering items into a

dictionary is simply repetition of the same operation, but compilation of program

modules involves successive refinement of a first pass and second (optimizing) pass,

which is indeed repetitive but involves a set of fundamentally different operations, as

well as a more complex termination condition and a refining effect on the product.

Discussing requirements with end users is likely to be dominated by feedback, leading to

the potential for revision of original goals or undoing of prior progress, which are not

likely to be present in either of the other two examples. Thus, even this relatively precise

definition is too inclusive to distinguish among these potentially significant behaviors.

2.2 Can Iteration Currently Be Measured?

Most previous efforts to quantify iteration in observed processes have employed

various forms of design process representation. Research on a social activity such as

design frequently leads to the seeking of patterns in depictions of qualitative data [Chi

1997]; and depicting design process data often involves the use of a design process

15

representation. For example, Olson et al. [1996] sought patterns in data captured from

team design meetings by a combination of heuristic and statistical techniques applied to

representations of observed design processes.

In the simplest terms, a representation is simply a depiction of something [Smith and

Browne 1993], or "something that stands for something else" [Palmer 1978]. As a key

tool for the solution of problems [Simon 1969], representations are applicable to

engineering design for representing the design artifact [Bodker 1998], [Sobek 2001] as

well as the design process [Banares-Alcantara 1995], [Chimka and Atman 1998]. A

representation of a phenomenon may be constructed upon a subset of its structurally

significant features and still be effective [Smith and Browne 1993]; in fact, many are.

For example, written language is effective as a representation of thought although it does

not convey its every feature.

Representations of the design process appear in several forms. Models of the design

process are perhaps the most familiar. Models vary in their level of abstraction; general

models express the overall structure of a process to contrast it with other types of

processes, while specific models express instances of a process type to contrast them with

other instances of the same type [Tully 1986]. Descriptive and prescriptive models of

design [Finger and Dixon 1989] and project management charts such as Gantt and PERT

charts [Stilian 1962] are examples of general and specific model representations,

respectively. In contrast to model representations which are primarily forward-looking

abstractions, representations are also employed to express a history of an actual instance

of a design process as it was implemented. Design histories [Shah et al. 1996] and design

timelines [Chimka and Atman 1998] are examples of process history representations.

2.2.1 Matrix representations

One type of model representation frequently encountered in studies relating to

iteration is the matrix representation [Kusiak et al. 1995], [Blandford and Hope 1985]. A

design problem is divided into subtasks which are listed in a preferred sequential order on

the horizontal and vertical margins of a grid. A mark in the grid indicates that the task to

16

the left of the mark is dependent on the task above the mark. For example, referring to

Figure 2.1, the mark at the intersection of row b and column c indicates that task b is

dependent on the outcome of task c. Generally, marks that exist above the main diagonal

indicate that an upstream (earlier) task is dependent on the result of a downstream (later)

task. Hence, matrix representations highlight task interdependency, a situation that

suggests a potential need for rework and hence iteration among subtasks. Knowledge of

the potential for rework may be used to reorder tasks to minimize this potential,

presumably minimizing the potential for iteration.

Figure 2.1. Example matrix representation

2.2.2 Can Matrix Representations Measure Iteration?

Matrix representations have been explored at length under the name Design Structure

Matrix (DSM) [Steward 1981, Gebala and Eppinger 1991] and have been used to model

dynamic aspects of design projects, particularly relating to rework or iteration. In most of

these applications, the matrix method has been used to model the potential for iteration in

a hypothetical design process plan, rather than to represent observed iteration. However,

matrix methods have occasionally been associated with representation of iteration

observed in an actual design process. Fricke [1996] created a transition matrix showing

the number of direct transitions that took place between each possible pair of a set of

tasks in an observed process. The matrix made it possible to see the existence and

frequency of "forward" and "backward" jumps between tasks, relative to an assumed

ideal task sequence. Patterns of forward and backward jumping were used to indicate the

17

degree of deviation between the actual task visitation sequence and the ideal sequence.

Austin et al. [2001] also represented observed processes via transition matrices.

Transitions in which tasks designated as "earlier" (again, in an assumed ideal task

sequence) were revisited after "later" tasks were then isolated and interpreted as evidence

of iterations caused by interdependence of tasks.

Matrix representation of observed iteration becomes questionable when one realizes

that reasons for backward transitions can vary. For example, backward transitions could

be generated if the designer simply chose to complete portions of a task incrementally

over several visits, perhaps in reaction to a constraint such as resource inavailability,

rather than the need to address another task on which it is dependent. These are two

different circumstances which might not both fit a given definition of iteration.

The ability to even construct a matrix representation of an observed process is highly

dependent on the degree to which the design problem may be broken down into discrete

constituent subtasks and a meaningful sequential order imposed on them. In many cases

a task breakdown may be difficult to reconstruct from the thousands of often cryptic

events that could compose an observed process. A matrix representation also imposes the

influence of an ideal or recommended ordering for the tasks, an ordering which is likely

to be somewhat arbitrary because, as Simon [1969] has pointed out, design problems

have no predetermined solution path. Furthermore, jumps backward and forward may

only be expressed in an aggregate manner in a matrix representation; individual jumps

and their patterns over time cannot easily be expressed.

2.2.3 Timelines

Another way to represent an observed design process involves placing its constituent

events into categories and plotting them across a time domain. This creates a two-

dimensional representation with time or sequence on one axis and categorized events on

the other. This is commonly referred to as a timeline [Chimka and Atman 1998]. As an

example, if the data source is a verbal protocol, the events are verbal statements that have

been systematically categorized according to a coding scheme. A generic timeline

representation is illustrated in Figure 2.2.

18

Figure 2.2. Example timeline representation

Timeline representations are a popular route for seeking patterns in captured

processes, and can express certain types of distinctions very well. For example, Atman

and Bursic [1998] represented instances of design problem solving in terms of sequential

transitions among classes of design activities, resulting in representations similar to that

depicted in Figure 2.3. They then related differences visible in the representations to the

level of educational development of the designer [Atman and Bursic 1998, Atman et al.

1999]. Similarly, Gunther and Ehrlenspiel [1999] represented observed design processes

in terms of visitations to four major design phases over time, in a format similar to that of

Figure 2.4. These representations were then used to determine whether subjects who

were formally trained in systematic design methodology followed a more systematic

process than those who had developed their design skills solely via professional practice.

For these authors, design activity and design phase were effective event categorizations,

because they led to representations that highlighted features and patterns that were

informative to their research questions.

Figure 2.3. Events categorized by activity class

19

Figure 2.4. Events categorized by design phase

Event categorizations vary widely. Events have been categorized by the category of

design activity they belong to [Atman and Bursic 1998], the level of abstraction of the

artifact at the time of the event [Goel 1994], and by their function-behavior-structure (F-

B-S) classification [Gero and McNeill 1998]. Some have categorized verbal events as

being process-related or content-related [Stempfle and Badke-Schaub 2002]. Valkenburg

and Dorst [1998] coded events according to the four categories of design actions

espoused by Schon [1984] in his theory of reflective practice: naming (identifying a

subfunction to consider), framing (beginning to consider the subfunction), moving (taking

experimental actions to advance the design), and reflecting (reflection on the earlier

activities to determine the next step). Christiaans and Dorst [1992] used the categories

"Reflecting", "Sketching", "Gathering Information", and "Reading the Brief".

The choice of an event categorization depends on the research question that is being

asked, and the feature or pattern that is most informative toward answering it. Differences

in the basis of categorization changes the unit of the dependent axis, causing different

types of patterns and distinctions to become visible.

Sometimes the primary purpose is to draw comparisons between individual processes.

Malhotra et al. [1980] recorded client-designer dialogs and categorized the topics of

spoken statements according to level of design abstraction (goal statement and

elaboration, solution outline, elaboration, and explication, and solution agreement). By

representing these dialogs along a time domain, they were able to discern a distinct

cyclical pattern. Gero and McNeill [1998] employ a number of different categorizations,

including level of abstraction (system level, subsystem interaction level, and two levels of

20

detail regarding specific subsystems), Function-Behavior-Structure classification, and

what are called micro- and macro- strategies (characterizations of strategy at two levels of

abstraction). They were able to show that substantially different problems resulted in

substantially different representation profiles.

Patterns in represented processes may also be employed for normative comparison.

Studies of this type seek to compare actual processes to idealized or "control" processes,

for instance, those that are felt to implement the recommendations of a prescriptive model

of design. Ball et al. [1994] kept track of activity transitions and whether they were

consistent with or deviated from a normative prescription, and thereby was able to create

representations that indicated how systematically the designer behaved in following a

suggested design approach. In a later study Ball et al. [1997] represented observed

processes in terms of the mean percentage of time spent discussing various design issues

over several time periods, with the purpose of seeing how closely the designers followed

normative standards suggested by a systematic design method.

One may also draw comparisons to see if discernible differences can be related to

other things, such as characteristics of the designer that generated them. For example,

Atman et al. [1999] related differences in represented processes to the subject’s level

(freshman or senior) in an engineering program. In another study, similar differences

were used to measure the degree to which the subject’s process had been impacted by the

reading of a passage from an engineering text [Atman and Bursic 1996].

2.2.4 Can Timelines Measure Iteration?

In timelines that employ an event categorization based on a more-or-less sequential

model (such as a traditional design phase model), one may discern patterns that are

tempting to associate with iteration. For example, in representations employed by

Gunther and Ehrlenspiel [1999] one may clearly see that designers often revisit "earlier"

phases of design such as conceptual design, after having spent time in "later" phases such

as embodiment design. In the representations of Atman and Bursic [1998], one can easily

see patterns in which design activities commonly associated with early stages of design

21

are revisited repeatedly in later stages of the process. Fricke [1996] used timelines to

show that the process of designers pursuing what was called a function-oriented strategy

was characterized by a large number of "backward jumps" from concrete to abstract

design phases. Are phase visitation patterns such as these depicting iteration?

Phase visitation patterns are difficult to confidently identify as iteration for some of

the same reasons that cast doubt on matrix methods. Suppose that one has defined

iteration as "the revisitation of previously completed work for the purpose of correction".

Redesign of a misdesigned component would then qualify as iteration. Looking at the

backward jumps in the timelines of the Fricke [1996] study, these jumps from the

concrete to the abstract could be generated either (a) by redesign of a component, or (b)

by a top-down, depth-first approach in which the designer fully designs one component

and then fully designs another. No redesign takes place in the latter case, although

backward jumps from the concrete (conclusion of component 1) to the abstract (start of

component 2) would be generated. Similar backward jumps would be generated if the

designer were to resume the design of a component that had previously been begun and

then postponed.

Despite this interpretive ambiguity, phase visitation patterns in timelines are

commonly taken as representing iteration (e.g. [Austin et al. 2001]). Under some

potential working definitions of iteration, this assumption would be difficult to accept --

for example, if one were to interpret the visitation patterns reported by Austin et al.

[2001] or Gunther and Ehrlenspiel [1999] as iteration under the example definition above,

one must assume that every transition from a "later" stage to an "earlier" stage was for the

purpose of correction, although this information is not available to support the

assumption. Naturally these concerns might be resolved by manually interpreting each

event to determine the actual context of the activity, but again the need for this additional

step adds to the cost of data collection and analysis.

22

2.3 Summary: Need for Operational, Objective, and Relevant Measures

Neither matrix methods nor timelines have thus far provided a sufficiently effective

means to measure observed iteration in an empirical setting. Measures that have been

employed in previous work in this area can be susceptible to interpretive ambiguities and

can be very costly to implement. Empirical study of iteration continues to call for a

definition of iteration that is operational toward its measurement in an empirical research

setting, that leads to reliable and objective measurement, and yields measures that are

potentially meaningful to issues of research interest such as design outcome.

23

3 Conceptual Framework

The goal of this chapter is to identify an aspect of design iteration that is potentially

meaningful to the interests of design research, and develop for it a precise

conceptualization that can lead to objective measures. Toward this end a conceptual

framework is developed to address the following goals:

(1) To acknowledge and define design behaviors that are commonly taken as iterative;

(2) To evaluate the potential interest of these iterative behaviors to design research;

and

(3) To select the most potentially interesting variety for the development of measures.

The conceptual framework begins by examining design as a form of process.

Properties of processes in general and of processes of design are contrasted and related to

patterns of design activity that are commonly described as iterative. This leads to the

recognition of several varieties of iteration, which are then examined with respect to their

potential degree of interest to experimental design research.

3.1 Nature of Processes

3.1.1 Goal, Actions, and Outcome

A process is defined as a series of actions or events conducing to a goal [Thro 1991],

[Merriam-Webster 1987]. Two properties of a process are therefore its set of constituent

actions and its goal. A goal represents a desired state of affairs that the constituent

actions of the process are meant to bring about. Although a process orients toward a

goal, its conclusion does not necessarily indicate achievement of the goal. The

conclusion of a process is best understood as delivering an outcome, which represents an

actual conclusion relative to whatever the goal has become [Gotlieb 1992]. An outcome

24

is therefore one specific instance of reality that, it is hoped, falls within the desired state

of affairs as delineated by the goal statement at conclusion.

3.1.2 Processes of Design

If design is a form of process, then design processes also possess a goal, a set of

actions, and an outcome. The goal is commonly expressed in the form of a set of desired

functional requirements to be delivered by the artifact [Suh 1990]. Outcome is

commonly understood in terms of cost, time, and quality [Delaney 1997]. Specifically,

design cost and design time represent an expenditure of resources in trade for the desired

function, while design quality represents the functionality achieved relative to the desired

functionality.

The constituent actions of a design process are more difficult to characterize. At a

very rough level, descriptive process models of design characterize the constituent

actions of design in terms of a series of roughly sequential design stages. But this

perspective offers little insight into constituent actions within individual stages, where

activity becomes more complex. A typical design process consists of a diverse array of

actions of widely varying significance, many of them taking place concurrently and often

leaving little physical evidence of their occurrence. This makes the characterization of

design actions at anything more than a nominal level of granularity a daunting task. But

the perception of design as an iterative process means that at least some of its constituent

actions take on a pattern that is perceived as iterative. Exactly what does one perceive in

judging the constituent actions of a design process as being iterative? An examination of

existing concepts of iteration may illuminate this question.

3.2 Repetition Iteration

As an example of a process, consider the goal of sending a message to someone. One

process for achieving this goal might consist of the following constituent actions:

25

(1) get a writing instrument,
(2) get a sheet of paper,
(3) write the letter,
(4) fold the letter,
(5) get an envelope,
(6) address the envelope,
(7) place the folded letter in the envelope,
(8) seal the envelope,
(9) drop the envelope into a mailbox.

These nine actions could of course be decomposed into subactions; for example, "seal

the envelope" could be decomposed into "unfold flap", "moisten gum", "refold flap", and

"apply pressure". For the purpose of illustration, these nine actions describe the process

quite adequately.

This process, like many processes depicted at this relatively broad level of detail, has

an orderly, straightforward quality. It proceeds incrementally toward its conclusion as

each action is successively completed. Although each action may vary in its importance

to the goal or in the degree of effort it requires, the successive traversal of actions

conveys a sense of incremental progress toward the conclusion. To refer to this

incremental property in which constituent actions successively increment a process

toward a conclusion, the term process incrementation will be employed.

In a process that is as orderly and straightforward as the letter-sending example, it is

difficult to detect any quality that might be called iterative; iterative processes seem to

possess something more.

Most concepts of iteration acknowledge or imply a repetitive character. The

dictionary defines iterative simply as "involving repetition" [Merriam-Webster 1987].

Nukala et al. [1995] and Eppinger et al. [1997] define iteration as "the repetition of

activities to improve an evolving design". Tully [1986] emphasizes "repeated

operations". A host of other concepts and definitions associate iteration with implicitly

repetitive activity such as revision, rework, redesign, and "trying again". The perception

of repetition in a process, then, is enough to assign it a basic sort of iterative property.

Returning to the dictionary, one finds that repetition (i.e. to repeat) is "to make, do, or

perform again". This definition suggests that a minimum requirement for repetition is the

26

existence of multiple instances of an event (i.e. made, done, or performed) that take place

in succession (i.e. again). Thus, repetition might be said to exist wherever there is a

relationship among distinct actions in terms of similarity and temporal succession.

Even if a process does not appear to have a repetitive component at one level of

detail, repetitive patterns might become visible when actions are decomposed further.

For example, consider this process for making coffee in an automatic coffeemaker:

(1) grind coffee,
(2) install paper filter,
(3) scoop three ounces of coffee into filter basket,
(4) add water to fill line,
(5) activate power.

Although this process is not at first visibly repetitive, the act of placing coffee in the

filter would decompose into three repetitive scooping actions if the scoop has only a one-

ounce capacity. Likewise, in the letter-sending example, the act of sealing the envelope

may involve several successive licks of the gum, and several successive applications of

pressure to the seal. Repetitive actions such as these contribute to process incrementation

just as do other actions of the process, but additionally give the process a repetitive

quality.

Some processes increment almost exclusively by repetition. Consider the familiar

process for numerical integration depicted in Figure 3.1. The goal is to estimate the area

under a curve in the range between 0 and x to a specified degree of accuracy (implied by

the size of increment dx):
(1) Decide on a horizontal increment size dx that is

appropriate to the desired accuracy of the
estimate,

(2) Measure the height of the curve at 1*dx,

(3) Calculate the area of the rectangle described by
1*dx and the height of the curve,

(4) Add the area to a cumulative sum,

and repeat steps (2)-(4) for 2*dx, 3*dx,...(x/dx)*dx.

Figure 3.1. Numerical integration performed as a repetitive incremental process

27

The process primarily consists of a repetitive cycle in which steps (2) through (4) are

repeated for a predetermined number of repetitions equal to x/dx. Each repetition serves

to increment toward completion of the sought outcome (which is the area under the curve

estimated to the specified degree of accuracy).

Are processes that are repetitive in this manner actually iterative in a meaningful

sense? Perhaps. Although it is hard to imagine a design process that would, overall, be

as orderly and predetermined as these purely repetitive processes are, it is conceivable

that a design process could include specific tasks that are themselves purely repetitive. It

therefore seems appropriate to acknowledge a purely repetitive pattern as a form of

design iteration. The term repetition iteration will be used to refer to the specific pattern

of process incrementation in which constituent actions take on a repetitive quality.

3.3 Progression Iteration

Most definitions of iteration suggest that it consists of something more than repetition

alone. The definition cited above from Nukala et al. [1995] and Eppinger et al. [1997]

associate iteration not only with repetition but also with the improvement or evolution of

a design. Similarly, Urban and Hauser [1993] associate iteration with refinement of a

design. These definitions seem to be referring to processes that achieve a succession of

improvements, evolutions, or refinements on the way toward the final outcome, rather

than a strictly incremental approach that achieves a single terminal outcome. These

intermediate outcomes represent intermediate approximations of the goal that are

achieved prior to the terminal outcome. This achievement of successive intermediate

outcomes will be referred to here as progression iteration.

Many processes that could be performed purely incrementally could alternatively be

performed progressively. Consider again the incremental numerical integration example.

Its goal may alternatively be pursued in a progressive manner as depicted in Figure 3.2.

Here, several intermediate area estimates are performed prior to the terminal one. Each

intermediate outcome is completed by exactly the same repetitive algorithm as in the

previous example, with only the element size and the necessary number of repetitions

28

being different. The key difference is that the process is now conducted in a way that

achieves intermediate approximations along the way to the terminal approximation.

These intermediate outcomes are less precise than the terminal outcome, but are available

more quickly with less immediate expenditure than if the terminal outcome were pursued

directly.

Figure 3.2. Numerical integration performed progressively

The same advantage is realized in the use of interlaced GIF (Graphic Interchange

Format) graphics that are designed to display on a web page in several progressively

detailed stages as they are loaded. The progressive display is meant to provide the viewer

a rough sense of the entire image early in the loading process. Again, this progressive

approach is an alternative to a purely incremental method (i.e., painting the image in full

detail line by line) that would deliver the same end result.

The choice between an incremental or progressive strategy also applies to more

complex processes. For example, consider the problem of writing a rough draft of a

report. An incremental strategy (Figure 3.3(a)) would have the writer begin with the

opening sentence and repeat the writing of additional sentences in sequence until the

entire report has been drafted. This process would simply increment a single, fully

formed terminal outcome, and would likely be difficult and unsuccessful. A more

agreeable strategy (Figure 3.3(b)) would instead have the writer outline the major

sections of the entire report, and then outline the major topics of each section, and so on,

gradually fleshing out the report in successive degrees of detail. Along the way,

completion of each intermediate level of detail (e.g., the section topic outline for the

entire report) is an intermediate outcome that represents an intermediate approximation of

the goal.

29

(a) (b)

Figure 3.3. (a) Incremental and (b) progressive approaches to writing.

Design problems may also present choices between incremental and progressive

strategies. The top-down, depth-first process of Figure 3.4(a), in which each required

function of the design is successively conceived, laid out, and finalized, resembles a

purely incremental approach because no intermediate approximations of the entire design

(i.e. all three functions) are completed prior to the terminal outcome. The top-down,

breadth-first approach of Figure 3.4(b) resembles a progressive approach, in which two

intermediate approximations of the entire design are completed at the conceptual and

preliminary levels prior to the final outcome at the detail level.

(a) (b)

Figure 3.4. (a) Incremental and (b) progressive approaches to design.

3.4 Contrasting Repetitive and Progressive Approaches

The numerical integration example demonstrates quite clearly that the decision to

perform a process progressively rather than incrementally can increase the total number

30

of operations required to reach the terminal outcome (in this case, 28 rectangle areas must

be calculated and summed instead of only 16). However, there are many situations in

design activity where early, approximate outcomes delivered by a progressive approach

can provide real advantages.

3.4.1 Task Complexity

Pursuit of intermediate outcomes can help maintain focus on the overall goal and

impose organization on the task of selecting appropriate steps toward the goal. In the

report-writing example, adopting a progressive approach rather than a purely incremental

one allows the writer to revisit each topic several times at several levels of abstraction,

focusing on overall organization at the higher levels and on rhetoric at the lower levels.

If instead the goal were pursued purely incrementally, both of these considerations would

have to be addressed concurrently, a task which is more difficult to perform effectively.

Although it has been suggested that the choice of an incremental (i.e., top-down depth-

first) approach may be related to a desire to minimize cognitive effort by focusing on

distinct functional portions of the problem, a good design outcome tends to correlate

better with the choice of a progressive (i.e. top-down breadth-first) approach [Gunther

and Ehrlenspiel 1999].

3.4.2 Early Information Availability

Intermediate outcomes can make emergent information available to other portions of

the project during early stages of design. The familiar "back of the envelope" calculation

is a form of intermediate outcome, performed with a minimum expenditure of resources

in order to provide approximate information that can be used temporarily until the inputs

required for a more accurate estimate have stabilized. In the words of one industry

executive, "we say it’s better to be 80 percent right fast than 100 percent right slow"

[Wagoner 2002, p. 89]. For example, the shape of a vehicle wheel might be initially

modeled as a cylindrical solid for the purpose of modeling weight distribution of the

vehicle or for constructing a mockup, and later refined to a more realistic shape after

options for tire size and hub construction have narrowed. Similarly, the progressive

31

approach to numerical integration provides a rough estimate of the curve area more

quickly and at less immediate cost than would the purely incremental approach; and use

of interlaced GIF graphics on a web page allows the viewer to make a judgement about

the need to load the rest of the image well before it has finished loading.

3.4.3 Opportunity for Feedback

Perhaps the most significant advantage provided by the availability of intermediate

outcomes is in the opportunity to evaluate their fitness relative to the goal. This

information can then be used to direct subsequent steps of the process more effectively

toward the goal. This type of information represents feedback. Feedback is defined here

as information resulting from a test or evaluation of an intermediate outcome that returns

information about its fitness relative to the goal.

Returning to the letter-sending example, a closer examination reveals that the process

did not specifically include placing a postage stamp on the envelope. Unless a prepaid

envelope was used, the outcome of the process would be a poor approximation of the

goal, because the letter would soon be returned to the sender. At that point the goal may

only be achieved by resuming the process and achieving a second outcome. Now, the

first letter (without postage) may be understood as an intermediate outcome representing

an intermediate approximation of the goal; the return of the letter represents feedback

information about its fitness as an approximation of the goal; and the second letter (with

postage) represents the second, terminal outcome. The process now possesses

progression iteration that utilizes feedback about the fitness of a previous outcome.

One important use for feedback information is in testing for a stopping condition

based on the result of the previous outcome. The letter-sending example above implicitly

utilized a stopping condition, in that the process halts by default after the first outcome,

unless and until feedback indicating nondelivery is received. In design, an obvious

manifestation of feedback as a stopping condition is when the designer asks, "is it good

enough yet?" or "does it work yet?" Even the progressive version of the numerical

integration process of Figure 3.2 can be made to employ feedback as a stopping condition

32

by simply evaluating the magnitude of difference between the area estimates delivered by

the previous and current outcomes. If the difference exceeds a specified tolerance

representing the degree of accuracy desired, then the bar width dx is halved and another

intermediate outcome completed; otherwise the latest outcome is accepted as the terminal

outcome and the process terminates.

Sometimes, feedback information may also be employed by incorporating it directly

into the generation of the next intermediate outcome, for example, to seed the next

outcome. To illustrate, consider the problem of specifying a battery pack for an electric

vehicle. The goal is to determine the necessary number of batteries (in terms of battery

mass) required to meet a desired driving range (in kilometers). The necessary number of

batteries depends on the total mass of the vehicle (heavier vehicles are less energy

efficient), but the total mass depends in part on the number of batteries. The easiest way

to solve this problem is with a numeric algorithm, as depicted in Figure 3.5.

Given:
Body mass (kg)
Desired range (km)
Battery energy density (kg/kWh)

(1) Provide seed estimate of battery mass (kg)

(2) Compute total vehicle mass:
= battery mass (kg) + body mass (kg)

(3) Compute energy economy (km/kWh):
= function of total vehicle mass

(4) Compute necessary battery mass (kg) at this
energy economy:
= Range (km) / Energy economy (km/kWh)

 * Energy density (kg/kWh)

(5) If new estimate of battery mass has changed
significantly, repeat steps (2) - (4) using new
estimate as seed; otherwise halt.

Figure 3.5. Repetitive and progressive numerical algorithm with feedback

In a repetitive cycle, an estimate of total mass (kg) is used to estimate the energy

economy of the vehicle (km/kWh), which in turn is used to estimate the necessary battery

33

mass. The resulting estimate is used to update the total vehicle mass. After several

repetitions the battery mass converges toward a fixed value and the process halts. This

process possesses progression iteration because it repeatedly delivers increasingly

accurate intermediate approximations of the necessary battery mass. It also employs

feedback, which is represented by (a) the return of each intermediate approximation as a

seed for the next approximation, and (b) the use of the difference between the last two

approximations as a stopping condition.

3.5 Feedback Iteration

The concept of feedback is frequently encountered in conceptions of iteration. For

example, some design process models liken the iterative loops that connect their various

stages to a feedback control mechanism [Taguchi 1986], [Suh 1990], [Konda et al. 1992].

Iterative processes are commonly associated with the presence of feedback; for example,

Braha and Maimon [1997] include feedback as an assumed property of an iterative model

of design. It is well understood that feedback from testing a design can discover hidden

rework [Cooper 1993], which is also associated with iteration. Dependency of tasks on

feedback has also been shown to increase expected design time and number of iterations

[Ahmadi and Wang 1994], and many negative outcomes related to poor feedback have

been identified [Busby 1998].

This unique significance of feedback suggests that the presence of feedback in a

progressive process deserves its own classification as a variety of iteration. Progression

iteration that is guided by feedback regarding the fitness of intermediate outcomes shall

be referred to as feedback iteration.

3.6 Selecting an "Iteration" to Measure

In summary, the preceding discussion has characterized processes as possessing a

goal and a set of constituent actions, which act to complete an outcome that instantiates

the goal. Process incrementation is the sequential performance of constituent actions that

results in the incremental completion of an outcome. Repetition is a specific pattern by

34

which a process may increment toward an outcome; progression is a pattern of successive

completion of intermediate outcomes; and feedback is an opportunity to evaluate an

intermediate outcome generated in a progressive process. These latter three concepts are

commonly associated with design iteration, leading to the recognition of three varieties of

iteration: repetition iteration, progression iteration, and feedback iteration.

One is now faced with the question, which variety of iteration would be most valuable

to measure in empirical research? Because the current study is specifically concerned

with enabling research that would relate design iteration to design outcome, it is

important to develop measures for a variety that is likely to be informative toward this

goal. We will now consider several criteria that are important in this regard.

3.6.1 Criteria for Selection: Significance as an Independent Variable

Experimental research typically seeks to relate one or more independent variables to

one or more dependent variables, in order to support or refute a hypothesis concerning a

relationship between the variables. This suggests that the variety of iteration selected

should be effective as an independent variable, which means that it should exhibit the

following characteristics:

(1) Variability as an independent variable

Because experimental research is concerned with relating variations in an independent

variable to variations in a dependent variable, it is important that the independent variable

exhibit variation across likely study populations. Experimental studies that measure

iteration as the independent variable would likely seek variations in iteration among

process instances gathered from subjects performing the same design problem. Varieties

of iteration that may be expected to exhibit significant variation in this context are more

attractive as an independent variable than those that would be relatively invariant.

35

(2) Influence on dependent variables related to design outcome

The dependent variables that express the effect of an independent variable should be

relevant to the goals of the experimental study that involves them. Because the current

study specifically anticipates experimental studies leading to the development of design

management guidelines, the dependent variable that holds the greatest interest is design

outcome (i.e. design cost, design time, and design quality). Forms of iteration for which

variations may be expected to cause variations in outcome are therefore of the greatest

interest.

(3) Controllability in design practice

In order to have prescriptive value for design practice, the specific variations in the

independent variable that lead to variations in the dependent variable should be

controllable so that the effect may be controlled in practice. For example, forms of

iteration that result from fundamental constraints such as the nature of a design problem

are of less interest than those that result from decisions made by the designer.

The three varieties of iteration outlined above are now examined with respect to these

three criteria.

3.6.2 How Significant Is Repetition Iteration?

Variability

In the previous examples of repetitive processes, their repetitive aspect came about as

a result of either the problem definition or of constraints acting on its solution. For

example, in the numerical integration process, the fact that repetitions are necessary at all

stems from the variable shape of the curve. Because the curve varies dramatically in

height and slope, only a relatively large number of relatively narrow rectangles can

deliver an accurate area estimate, leading to an inherently repetitive solution process.

Even the necessary number of repetitions is fixed because it depends on the size of the

increment dx, which is a result of the desired accuracy of the terminal outcome. These

factors are determined by the problem statement and so are not in control of the person

36

carrying out the process; therefore one would not expect much variation in repetitive

character if the process were performed multiple times by different individuals.

However, if the person carrying out the process were able to adjust the problem statement

to modify the necessary repetitive aspect of its solution, some variability in repetitive

character could result.

Influence

In general, the cost and duration of a repetitive process may be expected to increase

with the number of repetitions necessary to complete it, because one may generally

expect some degree of overhead cost, such as setup time, to be associated with each

repetition. This alone suggests a reason to expect variations in repetition iteration to

bring about variations in the cost and time aspect of design outcome. It seems less likely

that variations in the number of repetitions would lead to large differences in the quality

of the outcome, owing to the generally predetermined source of the repetitive aspect of

such processes.

Controllability

In the letter-writing example, the envelope-sealing subprocess was said to possess a

potential repetitive quality in its successive applications of pressure to the seal. Similarly,

the coffee-making example noted that the addition of coffee into the filter might call for

repetitive scooping actions. In both of these cases, these repetitive actions result from

capacity constraints. The need to apply more than one application of pressure to the seal

is largely related to the limited size and strength of one’s fingers and the inability to slide

pressure across both edges of the flap simultaneously when only two hands are available.

The need to perform repetitive scoops of coffee arises when the capacity of the scoop is

less than the amount of coffee needed. Capacity constraints that result in repetitive

actions may potentially be alleviated by a more appropriate allocation of resources to

these tasks, resulting in a reduction in the necessary number of repetitions. Where

resource allocation is within the control of the designer, this type of capacity-related

repetition may be controllable in practice.

37

3.6.3 How Significant Is Progression Iteration?

Variability

The observation that designers rarely stick to a perfectly depth-first (incremental) or

perfectly breadth-first (progressive) process indicates a relatively strong potential for

individual variability in progression iteration. Fricke [1996] found that two general

design strategies emerged, similar to breadth-first and depth-first. In what was called a

stepwise, process-oriented strategy, designers worked on different problem areas (e.g.,

different components) at one level of abstraction before proceeding to the next level of

abstraction. In the alternative "function-oriented" strategy, designers tended to work

within one problem area from abstract to concrete levels of abstraction, then proceeded to

the next component. All of the designers followed a different combination of breadth-

first and depth-first strategies at different times during the process. Because choosing

progression over incrementation also provides benefit in terms of process organization

and a reduction in complexity, it suggests a relation to the designer’s capacity to handle

complexity. These factors suggest that variations in progression iteration could be

expected among individual designers.

Variations in preference between a progressive or incremental strategy may also

emerge from cognitive constraints encountered by the individual. Recalling the previous

examples of progressive report writing and progressive numerical integration, they were

preferable to their purely incremental counterparts because they reduce the complexity

and difficulty of orienting the process toward an acceptable goal. This implies that

different individuals will find it necessary to rely on this strategy to differing degrees.

Influence

The general expectation that a progressive process can reduce complexity and

difficulty directly suggests that variations in the degree to which it is employed may lead

to variations in outcome.

38

Controllability

In demonstrating that many processes may be executed in either an incremental or

progressive manner, the previous examples illustrate that the decision is largely within

control of the designer, meaning that prescriptive guidelines relating to progression

iteration should be possible to implement if developed.

3.6.4 How Significant Is Feedback Iteration?

Variability

Feedback iteration, being a form of progression iteration, can be expected to have

similar implications for variability. The added dimension of feedback that accompanies

each progression provides an additional means of variation. For instance, processes may

not only vary in the degree to which tehy employ feedback iteration, but also in the

specific forms of feedback they generate.

Influence

The suggestion that variations in reliance on feedback are likely to cause variations in

outcome has a particularly strong argument. Feedback carries significant implications for

the effectiveness of design planning, which has a potentially strong influence on

outcome. For example, consider that in a non-feedback cycle, such as that of repetition

iteration or progression iteration, all of the information employed in each constituent

action is initially available in the problem statement. That is, all rectangle area

calculations were based upon the height of the curve at various points (given), and the

increment dx (given or computed deterministically using given information). This

suggests that every necessary step could be be predicted in advance so that appropriate

resources may be allocated before the process even begins. Feedback information,

however, is unique in that it represents information embodied in the evolving state of the

design, rather than information initially accessible in the problem statement. Processes

involving feedback information are therefore much more difficult to plan. In particular,

when feedback information is necessary to seed or otherwise inform subsequent

intermediate outcomes, it becomes very difficult to anticipate the number and nature of

39

the constituent actions that will eventually take place before the process halts. The

process is therefore susceptible to unpredictable conditions that can inflate cost and time

beyond that budgeted or result in a reduction in quality due to premature consumption of

budgeted resources.

Another important result of the involvement of feedback information is the potential

for divergent rather than convergent progression. In a purely progressive process (one

that does not evaluate intermediate outcomes via feedback), there is no reason to expect

intermediate outcomes to diverge away from the terminal outcome because the goal is

known a priori and all information applicable to the process that pursues it is known at

the outset. Without feedback, there is no source for information that could cause the

process to diverge from the original intent. Feedback, however, could lead to actions that

would otherwise not have a reason to occur, such as the undoing of previous work or the

consideration of changes to the problem statement. Subsequent outcomes could diverge,

potentially leading to a radically different outcome. This suggests that variations in

feedback iteration could be responsible for particularly significant variations in outcome.

Controllability

Can reliance on feedback iteration be controlled by decisions of the designer? A

request for feedback information may be understood as representing the designer’s choice

of testing over analysis. From a deterministic perspective, the fitness of a design may

theoretically be derived analytically by applying first principles to determine the

performance of the current design and comparing it to the goal statement. Frequently,

however, analysis is not the most practical way to obtain this information. Especially in

later stages of the design process when the design has become complex, testing the

current design for fitness is often a more practical alternative than to continue with an

increasingly complex and uncertain analysis. This tradeoff represents a decision that a

designer is capable of recognizing, evaluating, and acting upon if the proper guidelines

are available.

40

3.7 Conclusion: Develop Measures for Feedback Iteration

The general conclusions of this discussion are summarized in Table 3-1.

Table 3-1. Comparison of effectiveness as an independent variable

Variability Influence Control

Repetition Iteration weak moderate weak

Progression Iteration moderate moderate moderate

Feedback Iteration strong strong strong

Repetition iteration shows some potential for variability, influence, and

controllability, but these effects are weak to moderate compared to those of the other

varieties. Progression iteration has a potentially stronger degree of interest, but feedback

iteration is particularly strong. The current study therefore seeks to develop measures of

feedback iteration.

41

4 Measures of Iteration

The previous chapter identified several varieties of iteration and distinguished among

them in terms of their potential interest to the goal of empirically relating design iteration

to design outcome. Feedback iteration was judged as holding particular interest and was

selected as a subject for the development of measures. This chapter describes an

approach to developing such measures. It concludes with the development of several

measures that are then applied and evaluated in subsequent chapters.

An Approach to the Objective Measurement of Qualitative Data

Analyzing qualitative data such as that gathered from the observation of design

activity can be difficult, and often calls for subjective interpretation [Chi 1997].

Improving the objectivity of interpretation calls for measures that yield a similar

measurement result regardless of who applies them.

One approach to the application of measures to design activity data consists of

constructing a representation of the data and applying an appropriate set of metrics to the

representation. For example, in research that involves timeline representation of the

design process, it is not uncommon to witness the application of simple metrics to the

timeline depictions, such as number of transitions from one design step to another, or the

total duration of the process. Such metrics may serve as base quantities upon which

derived quantities that are more informative may be constructed. For example, the total

number of transitions might be divided by the time duration of the process to yield an

average transition rate, which might suggest something about the pace of one designer

relative to that of another [Atman et al. 1999].

A metric-based measurement strategy such as this calls for an appropriate means to

represent an observed design process, and an appropriate set of metrics to apply to it.

Our strategy will consist of the representation of design processes in the form of

timelines, and the measurement of design process variables that the timelines highlight.

42

Measures of iterative character will then be constructed from these base measures. The

remaining sections of this chapter develop the primary components of this strategy:

(1) A model of design on which timeline representation formats may be based;

(2) Schemas for timeline representation that are suggested by the model;

(3) A set of base metrics derived from specific patterns of activity that can be

portrayed under the timeline schemas; and

(4) Measures of iterative character derived from these metrics.

4.1 A Model of Design

The various timeline representations that were reviewed in Chapter 2 employ a

variety of event categorizations as the vertical axis of the timeline. In each case, some

model of design activity underlies the selection of these categories. For example, to

categorize observed activities according to stages of design such as problem definition,

information gathering, and so on [Atman and Bursic 1998, Atman et al. 1999] is to base

the timeline on a traditional model in which design is conceived as being composed of

activities that belong to a group of distinct, generally sequential stages. The choice of a

specific design model as a basis for a timeline representation is likely to influence what

the timeline is capable of expressing, and this decision is likely to be influenced by the

specific goals of the study.

In order to develop a timeline representation that is likely to lead to the measurement

of feedback iteration, a first step is to adopt a model of design that specifically accounts

for the presence of feedback in design activity. Recalling the examples of feedback

described in the previous chapter, it is apparent that feedback is a form of information,

specifically concerning the fulfillment of functional requirements relating to the goal of

the design process. Adopting an information processing perspective on design activity is

a natural way to begin searching for a design model that accounts for feedback.

43

4.1.1 An Information-Processing Model of Design Activity

Design is commonly understood and modeled as an activity of information processing

[e.g. Wallace and Hales [1987], Ullman et al. [1988], Safoutin [1990], Safoutin and

Thurston [1993]. These models hold that the information processing aspect of design

activity is key to understanding design at its most basic level. For example, one model of

design that adopts this perspective is the Task Episode Accumulation (TEA) model

[Ullman et al. 1988]. The TEA model teaches a conceptualization of design as a process

dominated by information application and retrieval, in which the designer employs

various information operators that work to advance the design by the application and

evaluation of information that surrounds it. In very simple terms, under this model a

design artifact grows by the accumulation of applied information, and information that

thereby embodies the artifact is periodically retrieved for the purpose of verification and

evaluation. Specific operators such as the "Assimilate" operator acknowledge various

aspects of information application, and others such as the "Evaluate" operator are directly

related to the generation and application of feedback information.

With respect to the current study, the value of this and other information processing

perspectives of design activity is in their recognition of the phenonema of information

application and information feedback. This allows the recognition of a very simple but

profound distinction between two sources of applied information - from the design

environment, which according to Ullman consists of sources such as domain knowledge,

reference manuals, training, education, and experience; and from the information content

of the design, in terms of feedback about its fitness.

In this study, the term feedback refers to information retrieved from the design state,

specifically regarding its fitness with respect to the functional requirements for which the

artifact is being designed. The counterpart to feedback is assimilation, which refers to

the application of information from any source that cannot be identified as feedback.

In a design process there are often many opportunities to generate information that

qualifies as feedback. For example, one may simply perform a mental simulation of the

interaction of two hypothesized components to judge their compatibility; or one may

44

construct a highly accurate prototype of a component or an entire design embodiment and

test it in an environment similar to that in which it is expected to be used. Although

various forms of feedback may vary dramatically in their accuracy, cost, and significance,

they qualify as feedback because they represent information concerning the fitness of the

design, either in the form of an approximation of the entire design or a portion of it.

4.1.2 A Parametric Model for the Design Task

We now turn toward selecting a model for the design problem itself. Although design

problems are said to share attributes that distinguish them from non-design problems

[Goel 1994], a number of distinct classes of design problem have been recognized. Some

examples are routine design, conceptual design, parametric design, and catalog design

[Ullman 1989]. To highlight assimilation and feedback in an empirical setting, there are

advantages to adopting a parametric model.

Parametric design has been described as "the design problem of refining from an

artifact type to a specific artifact" [Ullman 1989]. Structuring a design task

parametrically can facilitate understanding of the structure of the problem and can

support a systematic approach to its solution. A properly structured parametric design

problem models the artifact type as a set of distinct design parameters (DPs) that may be

mapped to one or more specific functional requirements (FRs). Design alternatives may

then be expressed in terms of parameter values, and their corresponding functional

performance is understood to be a function of these values. Such a parametric structure is

central to the axiomatic approach to design advocated by Suh [1990], which requires that

one represent the design problem as a transform between distinct DPs and FRs, as shown

in Figure 4.1. In Suh’s application, the parametric model serves to characterize the

overall nature of the designer’s work as one of discovering a satisfactory transform matrix

consisting of specific parameter values (pv). It also provides a formal construct that leads

to hypotheses regarding the quality of various classes of parametric solutions. Although

design problems vary in the degree to which distinct DPs and FRs are initially apparent,

Suh’s formulations implicitly assert that a parametric specification is applicable to

virtually any design problem.

45

Figure 4.1. Parametric model of the design problem [Suh 1990].

For our purposes, the value of adopting a parametric model is in providing a place to

look for activity that represents assimilation and feedback. Assimilation becomes

associated with DPs, and consists of the specification of parameter values. Feedback

becomes associated with the evaluation of specific FRs. Recognition and capture of

assimilation and feedback in an empirical setting may then be focused upon these specific

designer activities.

Summary: A Parametric, Information Processing Model of Design

Our information-processing, parametric model of design has described design as a

series of information processing events consisting of assimilation and feedback, which

take place with respect to a parametrically structured design task defined by design

parameters and functional requirements. These variables will be referred to by the labels

A, F, DP, and FR, respectively. The model is depicted in Figure 4.2.

Figure 4.2. Information processing, parametric model of design

46

4.2 Timeline Schemas

We now turn toward the development of schemas for timeline representation of

design processes under the parametric, information-processing model of design. Given a

specific model of design, the problem of depicting design activity on a timeline consists

of constructing a representation space based upon the variables supplied by the model,

and plotting these variables over time. Various combinations of the four major variables

A, F, DP, and FR lead to several potential timeline formats.

4.2.1 Assimilation-Feedback (A-F) Timeline

One potential format results from simply plotting assimilation (A) and feedback (F)

events over time, without regard to the design parameters or functional requirements they

are associated with. This creates what will be called an A-F timeline. Figure 4.3 depicts

an example of this timeline format, in which assimilation events are depicted as

rectangles and feedback as diamonds:

Figure 4.3. Example A-F timeline

The A-F schema is limited to depicting sequential patterns in these events. Because

events occur in only two types, A and F, the pattern may either consist of a succession of

a single type or a switch from one type to another. An episode will be defined as any set

of sequential events of the same type. Thus an assimilation episode consists of one or

more individual assimilation events that are bounded by two successive feedback events.

Similarly, a feedback episode consists of one or more feedback events bounded by two

47

successive assimilation events. An example showing several assimilation and feedback

episodes is provided in Figure 4.4.

Figure 4.4. Assimilation and feedback episodes in an A-F timeline

The significance of a multi-event assimilation episode lies in the suggestion that

downstream design parameter values in the episode are being set in the absence of

feedback about the effect of the upstream settings. That is, the second parameter is set

without evaluating the effect of the first parameter setting. If each parameter in the

episode is known to be functionally independent, that is, if their only influence is on

separate functional requirements, then this may not be a significant problem, but often

this is not the case. Because feedback regarding the effect of the upstream parameter has

not been generated, the designer must be basing downstream parameter settings using

information other than feedback, such as preexisting knowledge and experience (or is

simply making a guess).

Similarly, a multiple-event feedback episode indicates that the designer is repeatedly

requesting feedback without having made any intervening changes to the design. This

suggests that more than one functional requirement is being evaluated with respect to

previous parameter settings. For example, in order to evaluate the effect of a given

material specification on total cost of the product, one might first request feedback

information about the total material cost, followed by feedback about projected

manufacturing cost. A large number of events in a feedback episode suggest that the

designer is evaluating a broad range of FRs with respect to a fixed design state, which

suggests that the current state is being taken rather seriously as a potential solution.

48

In this study, the primary purpose of discussing the A-F timeline is to formalize the

concept of assimilation and feedback episodes. Although the A-F timeline format was

not selected for application in this study, its implications for measurement of iteration are

examined in detail in Appendix D.

4.2.2 A-F-DP and A-F-FR Timelines

Adding a second, vertical dimension to the timeline format allows one additional

design model variable to be depicted: either the DPs associated with each A, or the FRs

associated with each F (but not both). This would result in what could be called A-F-DP

and A-F-FR formats. Similarly, adding a third dimension would result in an A-F-FR-DP

timeline. This would require a three-dimensional depiction. Traditionally, most

timelines have taken on a two-dimensional format in a compromise between

expressiveness and practicality. The possibility of an A-F-FR-DP format is

acknowledged but will be reserved for future investigation; the remainder of this

discussion is restricted to two-dimensional formats.

In an A-F-DP timeline schema, DPs are depicted in the vertical dimension of the

timeline, as depicted in Figure 4.5. This allows each assimilation event to not only be

plotted in time but also to be positioned vertically to indicate the specific design

parameter it applies to. Feedback events, however, are not explicitly associated with

design parameters and so they still may only be plotted in time, as a vertical line. Figure

4.5 also depicts the appearance of assimilation and feedback episodes in this timeline

format.

Figure 4.5. Example A-F-DP timeline

49

Alternatively, in an A-F-FR timeline schema, FRs are depicted in the vertical

dimension, as illustrated in Figure 4.6. This allows each feedback event to be positioned

vertically to indicate the specific functional requirement it evaluates. Assimilation events

can only be plotted as a vertical line.

Figure 4.6. Example A-F-FR timeline

These timeline formats will now be systematically examined in terms of the patterns

of episodes that they are capable of depicting. Several specific patterns that are

particularly suggestive of relevant base metrics will be examined in detail.

4.3 Patterns and Base Metrics

The A-F-DP and A-F-FR timeline schemas provide two distinct frameworks for the

depiction of assimilation and feedback events. The manner in which events are depicted

under each schema leads to a set of characteristic patterns that are endemic to the schema.

These patterns provide a possible basis for metrics by which a depicted design process

might be measured.

The current study examines patterns that arise from consideration of a sequence of

three sequential episodes of assimilation or feedback, which will be referred to as a

triplet. The triplet approach is limited to revealing patterns of a highly localized sort that

can be expressed in a group of three sequential episodes. Other patterns of iteration are

likely to exist that this approach would not identify. For example, a human looking at a

50

timeline can easily detect the possible existence of patterns that exist on a broader scale,

such as repeated visitations to specific parameters or groups of parameters over the

course of the process. Systematic identification of patterns such as these would call for a

different approach. Despite its limited scope, the triplet approach does reveal patterns

that are potentially informative to design outcome and that are measurable in an empirical

setting. The following sections explore this approach by systematically examining all

possible triplet patterns that can be recognized under the A-F-DP and A-F-FR timeline

schemas.

4.3.1 Timeline Information Attributes

Information Attributes of the A-F-DP Timeline

In an A-F-DP timeline, let us consider a sequence consisting of a feedback episode

(F) bounded by two assimilation episodes (A). This A-F-A sequence contains the most

information compared to the alternative F-A-F sequence, because it contains two A events

which carry additional DP information. In an A-F-DP timeline, one is thus concerned

with discerning patterns in A across a given F.

Three types of information about each A episode are carried in an A-F-DP timeline:

the fact that the episode occurred (denoted by the notation a), the quantity of design

parameters that were edited in the episode (denoted by nDP), and the specific identity of

these parameters (idDP). This can be seen by referring again to Figure 4.5, in which may

easily discern that the episode occurred, that it consisted of specifically three events, and

that DP1, DP2, and DP3 were affected. With regard the the F episode, only two types of

information are carried: the fact that the episode occurred (denoted as f), and the

quantity of FRs that it evaluated (nFR). This again can be seen in Figure 4.5, in which it

can be established that a feedback episode occurred and that it consists of specifically

three events. However, information about the FRs associated with these events is not

represented. Table 4-1 summarizes the types of information that are therefore accessible

in any A-F-A sequence in an A-F-DP timeline.

51

Table 4-1. Accessible information in an A-F-A sequence

episode i-1 (A) episode i (F) episode i+1 (A)

Occurrence (a) Occurrence (f) Occurrence (a)

DP quantity (nDP) FR quantity (nFR) DP quantity (nDP)

DP identity (idDP) DP identity (idDP)

An A-F-A sequence therefore can be translated to a large variety of specific triplets

and doublets, consisting of various combinations of the quantities shown in the table.

Each combination represents a specific pattern that may be extracted. For example, the

triplet

(nDP) : (f) : (nDP)

represents the pattern that is being discerned when one considers the number of

parameters (nDP) that were edited prior to a feedback episode (f), and compares it to the

number of parameters were edited prior to the next feedback episode (nDP).

Alternatively, the doublet pattern

(nDP) : (f)

represents consideration of only the number of parameters edited (nDP) prior to a single

feedback episode (f).

Information Attributes of the A-F-FR Timeline

Next, let us consider the information attributes of an A-F-FR timeline. Here, an F-A-

F sequence contains more information than the alternative A-F-A sequence, because F

events carry additional FR information. In an A-F-FR timeline, one is thus concerned

with patterns in F episodes across A episodes.

Three types of information are accessible about each F episode: the fact that the

episode occurred, the quantity of FRs that were evaluated in the episode, and the specific

identity of these FRs. Only two types of information regarding the assimilation episode

52

are accessible: the fact that the episode occurred, and the quantity of DPs that it affected.

Again, this may be confirmed by examining the example timeline of Figure 4.6. These

information possibilities are depicted in Table 4-2.

Table 4-2. Accessible information in an F-A-F sequence

episode i-1 (F) episode i (A) episode i+1 (F)

Occurrence (f) Occurrence (a) Occurrence (f)

FR quantity (nFR) DP quantity (nDP) FR quantity (nFR)

FR identity (idFR) FR identity (idFR)

The A-F-FR timeline thus leads to an additional set of specific triplets and doublets

that suggest specific patterns. The next section examines these patterns in detail.

4.3.2 Episode Patterns

Enumerating each triplet/doublet pattern that is possible under the A-F-DP and A-F-

FR timeline schemas yields a large collection of potential episode patterns that might be

sought in either type of timeline. The number of combinatorial possibilities is reduced

substantially after accounting for redundance in the occurrence variable. When applied

to both bounding episodes (the first or last position in a triplet), this variable creates only

(a):(f):(a) and (f):(a):(f) triplets. These triplets are not significant because, by definition,

all processes must be composed of an alternating sequence of a and f episodes (that is,

every feedback episode is by definition bounded by two assimilation episodes, and vice

versa). After eliminating these possibilities, sixteen possible patterns emerge for each of

the two timeline schemas.

For an A-F-DP timeline, Table 4-3 depicts each potential pattern and provides a

verbal interpretation of the situation it implies. Table 4-4 similarly depicts each potential

pattern for an A-F-FR timeline.

53

Table 4-3. Episode patterns in an A-F-DP timeline

episode
i-1
(A)

episode
i

(F)

episode
i+1
(A) Interpretation Pattern name

1a nDP f - Feedback is preceded by revision of a given
quantity of DPs

Parameter
quantity

2a - f nDP Feedback is followed by revision of a given
quantity of DPs

-

3a nDP f nDP Successive feedback episodes concern revisions to
same or different quantity of DPs

Parameter
breadth

4a idDP f - Revision of specific DPs is followed by feedback -

5a - f idDP Feedback is followed by revision of specific DPs -

6a idDP f idDP Successive feedback episodes concern revisions
to same or different specific DPs

Parameter
identity

7a nDP f idDP Feedback concerning revisions to a given quantity
of DPs is followed by revision of a specific set of
DPs

-

8a idDP f nDP Feedback concerning revisions to a specific set of
DPs is followed by revisions to a given quantity of
DPs

-

9a nDP nFR - Revision of a given quantity of DPs is followed by
feedback about a given quantity of FRs

-

10a - nFR nDP Feedback about given quantity of FRs is followed
by revision of a given quantity of DPs

-

11a nDP nFR nDP Successive feedback episodes about a same or
different quantity of FRs concern a same or
different quantity of DPs

-

12a idDP nFR - Revision of specific DPs is followed by feedback
about a given quantity of FRs

-

13a - nFR idDP Feedback about a given quantity of FRs is followed
by revision of specific DPs

-

14a idDP nFR idDP Successive feedback episodes concern revisions to
same or different specific DPs

-

15a nDP nFR idDP Feedback about given quantity of FRs, concerning
revisions to a given quantity of DPs, is followed by
revision of specific DPs

-

16a idDP nFR nDP Feedback about given quantity of FRs, concerning
revisions to specific DPs, is followed by revisions
to a given quantity of DPs

-

54

Table 4-4. Episode patterns in an A-F-FR timeline

episode
i-1
(F)

episode
i

(A)

episode
i+1
(F) Interpretation Label

1b nFR a - Assimilation is preceded by evaluation of a given
quantity of FRs

-

2b - a nFR Assimilation is followed by evaluation of a given
quantity of FRs

-

3b nFR a nFR Successive assimilation episodes concern
evaluations of same or different quantity of FRs

FR breadth

4b idFR a - Evaluation of specific FRs is followed by
assimilation

-

5b - a idFR Assimilation is followed by evaluation of specific
FRs

-

6b idFR a idFR Successive assimilation episodes concern
evaluations of same or different specific FRs

FR identity

7b nFR a idFR Assimilation following evaluations of a given
quantity of FRs is followed by evaluation of
specific FRs

-

8b idFR a nFR Assimilation following evaluations of specific FRs
is followed by evaluation of a given quantity of
FRs

-

9b nFR nDP - Evaluation of a given quantity of FRs is followed
by revision of a given quantity of DPs

-

10b - nDP nFR Revision of a given quantity of DPs is followed by
evaluation of a given quantity of FRs

-

11b nFR nDP nFR Successive assimilation episodes affecting a same
or different quantity of DPs are evaluated in terms
of a same or different quantity of FRs

-

12b idFR nDP - Evaluation of specific FRs is followed by revision
of a given quantity of DPs

-

13b - nDP idFR Revision of a given quantity of DPs is followed by
evaluation of specific FRs

-

14b idFR nDP idFR Successive assimilation episodes concern
evaluations of same or different specific FRs

-

15b nFR nDP idFR Revisions to given quantity of DPs, following
evaluation of a given quantity of FRs, is followed
by evaluation of specific FRs

-

16b idFR nDP nFR Assimilation in a given quantity of DPs, following
evaluations of specific FRs, is followed by
evaluations of a given quantity of FRs

-

55

4.3.3 Selecting Patterns of Interest

The purpose of seeking a pattern in an observed design process would be based upon

an expectation that the pattern may be significant to some question of interest. Most of

the patterns depicted in the tables do not have obvious significance. However, a few of

the patterns do have a concrete interpretation, and some of these interpretations have

implications for design outcome. These patterns will be discussed in the following

sections.

Parameter Quantity Pattern

Episode pattern 1a (Table 4-3) is particularly interesting. It describes the quantity of

parameters that are edited prior to a feedback event, and will be referred to as the

parameter quantity pattern.

As we have already established, a feedback event returns information regarding the

fulfillment of a functional requirement. When the designer changes parameter values and

seeks feedback about the effect, it represents an opportunity to learn the effect of specific

parameter changes on design performance so that this information may be applied to

subsequent decisions.

In this regard, the most reliable information is generated when the observed effect can

be isolated to a single variable. Multiple variables act to confound the effect and so the

observed effect cannot provide as reliable a lesson. This suggests that variations in the

parameter quantity pattern might be relatable to variations in design outcome. A designer

who habitually edits multiple parameters before requesting feedback generates

information that is less informative than does a designer who habitually concentrates each

feedback request on a single parameter. This suggests that a desirable outcome will be

more difficult to find. For this reason it is potentially attractive to distinguish among

observed processes in terms of the parameter quantity pattern.

Identifying the parameter quantity pattern in an A-F-DP timeline is straightforward.

Figure 4.7 shows an unconfounded feedback event in which only one parameter is active.

56

In contrast, Figure 4.8 shows a feedback event prior to which multiple parameter values

have been changed. By identifying these events, a design process might be characterized

in terms of its relative proportion of each type of event.

Figure 4.7. Unconfounded parameter quantity pattern

Figure 4.8. Confounded parameter quantity pattern

Alteratively, rather than counting events based on whether they respond to one

parameter change or more than one, it is also possible to base the metric on the average

number of variables that confound a typical feedback event. This computed application

of the metric is developed further in Appendix E.

Parameter Identity Pattern

Episode pattern 6a (Table 4-3) is another interesting pattern. It compares the identity

of parameters between two successive feedback events. That is, it indicates whether the

designer is submitting the same set of parameters repeatedly or is switching to different

parameters. The pattern that describes this issue will be referred to as parameter identity.

The total number of parameters is not important to this pattern; each set could consist of a

similar number or a different number.

Like the parameter quantity pattern, the parameter identity pattern is also suggestive

of an influence on design outcome. Repetition of feedback requests that involve a

57

stationary set of parameters suggests a focused optimization cycle, in which knowledge is

cumulatively being built about the influence of this set of parameters on design

performance, and is immediately being reapplied to the revision of the same parameters.

In contrast, to frequently travel from one set of parameters to a different set interrupts the

learning process about the first parameter set, suggests that the information returned is

not being immediately applied to decisions about the same parameters, and allows the

information to be confounded by the effect of intervening changes to other parameters

that take place in the meantime. By this reasoning a process characterized by frequent

travel from one set of parameters to a different set potentially generates and applies

feedback information less effectively than one that remains stationary across feedback

events more often.

For this reason it is potentially attractive to distinguish among observed processes in

terms of the parameter identity pattern. Figure 4.9 depicts a stationary parameter identity

pattern in which successive feedback episodes encounter the same set of parameters. In

Figure 4.9(a), changes to the same single parameter are the subjects of both successive

feedback events. In Figure 4.9(b), the same set of two parameters is the subject of each

event.

(a) (b)

Figure 4.9. Stationary parameter identity patterns

In contrast, Figure 4.10 depicts traveling patterns in which a different parameter set is

edited across successive feedback events. In these examples, none of the parameters in

the first event are present in the second.

58

(a) (b)

Figure 4.10. Traveling parameter identity patterns

It follows that a confounded feedback pattern (one that submits multiple parameters)

may be partly stationary and partly traveling, if some parameters are continued in the next

feedback event while others are not. This situation can be accounted for by calculating

the proportion of parameters that continue. For example, if the first feedback event

involves DP1, DP3, and DP5 while the second involves DP1, DP2, DP3, and DP7, then

2/3 of the parameters are continued and 1/3 are not. (Incidentally, the appearance of DP2

and DP7 in the second episode is inconsequential to assessing the parameter identity

pattern because neither is present in the first episode and therefore cannot be regarded as

having been continued).

Other Patterns

A number of other patterns have interpretations that are conceptually meaningful,

although they do not have immediately obvious implications for design outcome. These

patterns are discussed below for completeness.

Episode pattern 3a (Table 4-3) concerns the relative number of parameters that are

active in two successive feedback events. That is, it indicates whether the designer is

submitting an increasing, decreasing, or constant number of parameters to the next

feedback episode. This pattern might be referred to as parameter breadth. The identity

of the parameters is disregarded; both sets could consist of similar parameters or be

entirely different. However, an expanding number of parameters guarantees that new

parameters have appeared, and the parameter focus is widening; a decreasing number

guarantees that the focus is narrowing.

59

Episode pattern 3b (Table 4-4) represents a breadth pattern similar to parameter

breadth, but with respect to functional requirements instead of design parameters. This

pattern might be referred to as FR breadth. It concerns the relative number of functional

requirements that are evaluated in two successive feedback events. That is, it indicates

whether the designer is evaluating an increasing, decreasing, or constant number of

functional requirements. The identity of the specific FRs is disregarded; both events in

the pair could concern the same set of FRs or an entirely different set. However, an

expanding number of FRs guarantees that new FRs have found consideration, and the

focus on functionality is widening; a decreasing number guarantees that the focus is

narrowing.

Episode pattern 6b (Table 4-4) represents an identity pattern similar to parameter

identity, but with respect to FRs instead of DPs. Similarly it indicates whether the

designer is evaluating the same set of FRs repeatedly or is switching to a different set.

This pattern might be referred to as FR identity. The total number of FRs is disregarded;

each set could consist of a similar number or a different number.

4.3.4 Patterns as a Basis for Measures

The foregoing discussion has examined patterns that emerge from various sequences

of three episodes of assimilation or feedback. Despite this limited scope, several patterns

were identified that have an interpretation suggestive of an influence on design outcome.

These patterns represent a potential focus for those concerned with measuring iterative

character in a way that has potential relatability to design outcome. Measures based on

analysis of these patterns would allow a researcher to objectively measure the aspect of

iterative character that they express, and draw distinctions among observed processes in

these terms.

The next section proceeds by developing several measures of iterative character that

are based upon these patterns.

60

4.4 Measures of Iterative Character

4.4.1 Feedback Quality Measure

The parameter quantity and parameter identity measures both relate to an issue that

will be called feedback quality.

Feedback information represents an opportunity for what might be called "iterative

learning", the process by which feedback builds knowledge about the effect of each

parameter on performance of the design. This interactive process helps guide the process

most effectively toward the goal.

One may now imagine a "random iterator" who, by leaping around randomly, tends to

generate confounded feedback information about an ever changing set of parameters, and

a "learning iterator" who tends to concentrate feedback on one parameter at a time and

immediately reapply the information to the same parameter. The random iterator

generates relatively poor quality feedback information compared to the learning iterator.

A measure that allows us to distinguish between the random iterator and the learning

iterator based upon the quality of feedback they generate would be a potentially valuable

measure of iterative character. For instance, it would allow the exploration of research

questions such as whether the learning iterator tends to have a more successful design

outcome.

A basis for comparing processes in terms of their feedback quality may be

constructed from the parameter quantity and parameter identity patterns. A grid is

defined with parameter quantity on the horizontal and parameter identity on the vertical,

as depicted in Figure 4.11. In this space, processes that tend toward concentrated,

stationary feedback patterns would reside toward the upper right hand corner of the grid

(Quadrant A) indicating that they tend to generate the highest quality feedback

information. Processes that tend toward confounded, traveling feedback patterns would

reside toward the lower left corner (Quadrant C) indicating that they tend to generate

lower quality feedback information. Quadrants B and D represent intermediate feedback

61

quality. Quadrant B represents a stationary but confounded pattern in which each

submission for feedback is concentrated on the same group of parameters, but the

feedback is confounded because more than one parameter is involved. Quadrant D

represents a concentrated but traveling pattern in which feedback is concentrated on a

single but ever changing parameter.

Figure 4.11. Feedback quality measure

The feedback generation pattern of Quadrant A will be referred to a Type A iteration.

Similarly, the patterns of Quadrants B, C, and D will be referred to as Type B, Type C,

and Type D iteration, respectively. Several A-F-DP timelines depicting examples of

processes possessing these feedback patterns are found in Figures 4.12 through 4.15.

Figure 4.12 depicts a process that is predominantly Type A because most successive

events involve the same single parameter. It is predominantly but not purely Type A

because a minority of Type D events are generated due to the periodic need to transition

from one parameter to the next. Although a process cannot be purely Type A if it

involves more than one parameter, a pure Type A state can be approached if each

parameter is continued a large number of times.

62

Figure 4.12. Type A (quantity single, identity same)

Processes that are dominant in Type A episodes would naturally be associated with

optimization of the effect of a single parameter. This involves the generation of

unconfounded information about the effect of a parameter change and immediate

application of learning about the effect.

The process of Figure 4.13 is entirely Type D because all of its successive events

involve a single but different parameter. A Type D process does not follow an

optimizing pattern. It tends to generate unconfounded information about the effect of a

single parameter change, but does not tend to reapply the lesson immediately to the same

parameter.

Figure 4.13. Type D (quantity single, identity different)

The process of Figure 4.14 is predominantly Type B because most of its successive

events involve the same set of multiple parameters. It is predominantly but not purely

Type B because the transition between the DP1:DP2 pairing to the DP3:DP4 pairing is a

Type C event.

Figure 4.14. Type B (quantity multiple, identity same)

63

Like Type A processes, processes that are dominant in Type B episodes also follow

an optimizing pattern in which the same parameters are present in successive episodes,

implying that learning about the effect of the set of parameter changes is being reapplied.

However, the feedback this generates is confounded and thus of a different quality.

The process of Figure 4.15 is entirely Type C because its successive events involve

different sets of multiple parameters. Type C processes do not follow an optimizing

pattern nor do they immediately reapply what is learned.

Figure 4.15. Type C (quantity multiple, identity different)

4.4.2 Assessing Feedback Quality

There are at least two ways to assess a design process in terms of Type A, B, C, and

D feedback quality patterns.

Discrete Assessment of Feedback Quality

One way is by simply examining each feedback event, determining its classification

as Type A, B, C, or D, and computing the percentage of feedback events in each category

over the entire process. The categorization may be made objectively according to the

following process:

1. Determine the number of parameters edited between the current and previous feedback events.

2. For each parameter, determine whether or not it is also edited prior to the next feedback event

(i.e., continued).

3. If only one parameter is edited, and it is continued in the next feedback event, the feedback

event is Type A.

4. If only one parameter is edited, but it is not continued, the event is Type D.

64

5. If more than one parameter is edited, assign classes as follows:

If all parameters are continued, assign Type B.

If no parameters are continued, assign Type C.

If some are continued and some are not, the feedback event consists of a Type B component

and a Type C component. Classify the event in an apportioned manner as follows: Assign

Type B to each parameter that is continued and Type C to each parameter that is not, and

divide each by the total number of parameters. For example, if one parameter is continued

and two are not, the event consists of 1/3 Type B and 2/3 Type C.

Once every feedback event in the process has been classified, the relative percentages

of classes A-D may then be placed in the corresponding quadrants of a 2x2 grid, resulting

in a feedback quality profile. For example, if the process is 63% A, 4% B, 20% C and

13% D, the grid would be filled as shown in Figure 4.16:

4 63 %B %A

20 13 %C %D

Key

Figure 4.16. Example feedback quality profile

Similarly, the example processes of Figures 4.12 through 4.15 would be depicted as

shown in Figure 4.17:

0 80 0 0 86 0 0 0 %B %A

0 20 0 100 14 0 100 0 %C %D

fig. 4.12 fig. 4.13 fig. 4.14 fig. 4.15 Key

Figure 4.17. Feedback quality profiles for processes of Figures 4.12 through 4.15

Once a feedback quality profile has been created for each process in a group of

observed processes, the profiles may then be grouped based on their similarity in terms of

the four quadrant values. Several approaches for this task will be described later.

65

Computed Assessment of Feedback Quality

One potential criticism of the discrete method concerns its tendency to weight all

confounded feedback events equally, regardless of the number of parameters that actually

confound the event. One may instead wish to account for the difference between events

confounded by, say, two parameters versus three or more, on the theory that a small

number of confounding parameters delivers more useful information than a large number.

A computed approach to assessing feedback quality of a process would characterize

parameter quantity by computing an average value for parameter quantity over the whole

process, rather than simply classifying feedback events as involving one or multiple

parameters.

Initial trials with this approach suggest that its result is not dramatically different from

that of the discrete approach. Furthermore, the computed nature of the result prevents it

from being expressed in the quadrant-based classification system. A recommended

procedure for conducting the computed approach, as well as the results of the trial

application, are described in Appendix E.

4.5 Drawing Comparisons Among Processes

Applying the feedback quality measure is an important step toward drawing

distinctions among individual processes. However, application of a measure to individual

processes allows little more than pairwise comparison between two individuals;

comparing multiple individuals simultaneously remains difficult. An effective way to

draw comparisons is to group similar individuals into one of a set of categories based on

their similarity in terms of the measure. Then, comparisons may be drawn among each

group while retaining the ability to inspect individuals as needed.

The first concern in grouping individual processes is the choice of a basis on which to

evaluate their similarity. Similarity may be evaluated with respect to either similarity in

pattern or similarity in feedback quality. Pattern simply refers to the relative distribution

of A, B, C, and D patterns of which a process is composed. A feedback quality profile

expresses this pattern distribution directly. Alternatively, feedback quality is an overall

66

quality assigned to the process based on its distribution of A, B, C, and D patterns and the

theoretical relative quality contribution of each. Type A patterns contribute the highest

quality feedback because they maximize parameter continuity and minimize parameter

confounding. Type B and D patterns contribute intermediate quality feedback because

each possesses one of the effective aspects of the Type A pattern but lacks the other.

Type C patterns possess neither and so contribute the lowest quality feedback. A given

process might be assigned an overall feedback quality by computing a simple weighted

sum based on its pattern distribution and these relative quality levels.

The next concern is that of grouping processes with respect to their similarity. The

general problem of grouping items based on similarity is a problem of classification. If

an existing classification scheme is known to apply to the items that are to be grouped,

classification can be done in a straightforward manner by a distance-based, least squares

approach. For example, if the items to be classified are samples of unidentified

construction material, then the applicable categories would correspond to the set of

known types of construction materials. If each sample is described in terms of variables

representing its physical properties, it may be assigned to a category by computing a

Euclidean distance between these variables and the geometric centroid of each respective

category. The item may then be assigned to the geometrically nearest category.

In classification problems where an applicable classification is not known in advance,

a number of approaches are available. One possibility is to simply specify a priori a set

of categories based on canonical theory, intuition, or an examination of the data. Items

may then be assigned to the geometrically nearest category. If no canonical theory or

other basis is available, analytical techniques may be employed to divide the items into

so-called "natural" categories that are implied by the distribution of the items themselves.

This is known as cluster analysis, and is described in detail where it is employed in

Appendix E.

The current study assigns individual processes to a set of canonical categories that are

suggested by a simple naming convention. Processes may be assigned to these categories

either by manual application of the naming convention or by a distance-based method.

The following sections describe these methods in more detail.

67

4.5.1 Grouping by Similarity in Pattern

The X+yz Naming Convention

As a first-order method to categorize processes manually, a naming convention was

developed. The naming convention simply characterizes each process in terms of its

most dominant and next most dominant quadrants. The notation takes the form

X + yz

in which X is an upper-case letter representing the strongest quadrant, and yz are

lower case letters representing secondary quadrants.

The guiding principle in this notation is to specify the letters of each quadrant,

starting with the most dominant, until 75% of the patterns in the process have been

accounted for. The letter of the strongest quadrant is placed in the first position, as a

capital letter to indicate that it is dominant. If this quadrant is 75% or greater, no more

letters need be assigned. Otherwise, the second largest quadrant is indicated by a lower

case letter. If the sum of the percentages in the first and second quadrant add up to 75%

or more, no more letters are added. Otherwise the third largest quadrant is added in lower

case, and the remaining quadrant is disregarded. Figure 4.18 shows an example data set

of four hypothetical processes to which this naming convention has been applied.

12 26 11 40 13 77 7 55 %B %A

17 45 30 19 9 1 10 28 %C %D

D + ac A + cd A A + d Key

Figure 4.18. Example feedback quality profiles with X+yz naming

Ties are governed by the following rules. In the case of a tie in selecting the first

letter, the next largest quadrant breaks the tie in favor of the quadrant to which its pattern

is most similar: for example, if A and D are tied, then C favors D and results in the choice

of D+a. In an A-C or B-D tie, this rule is inconclusive and in this case A favors C and D

favors B by convention. In the case of a tie selecting the second letter, the quadrant that

68

is by definition higher in feedback quality is selected (choosing A over B/C/D, and

choosing B/D over C). If the tie is between B and D, which are both intermediate quality,

D is selected if A is larger than C, and B is selected otherwise. In the case of a tie in

assigning a third letter, neither letter is assigned because mathematically the third number

can be no larger than 16%, and is either much smaller or is relatively balanced with the

fourth number, which limits its discriminative power. Finally, if more than one quadrant

is capable of reaching the 75% threshhold and thus halting the naming process, the

quadrant with the larger percentage is selected.

The threshholds employed were carefully selected to provide certain interpretive

properties to the naming convention. The presence of a single capital letter not only

indicates that a process is particularly strong in that quadrant (at least 75%), it also

implies that no other single quadrant can possess more than the remaining 25%, and

likely contains less if it is shared with other quadrants. The addition of a single lower

case letter indicates that the dominant quadrant is less than 75%, and the secondary

quadrant is quite strong because only two letters needed to be assigned to fulfill the 75%

threshhold. Because the first quadrant must be larger than the second, the dominant

quadrant is no smaller than 38% and will usually be greater. The presence of a third

letter implies that three quadrants were sufficiently similar in magnitude that all of them

were required to reach the 75% threshhold, and by implication the dominant quadrant is

not particularly dominant.

The X+yz naming convention is intended to provide a simple means of manual

classification that allows a first-order grouping while preserving specific information

about each individual. For example, individuals might be grouped according to their

dominant element(s) X or X + y, while remaining distinguishable within each group by

reference to their less significant elements y and/or z.

Canonical Profile Categories

Profiled processes might alternatively be grouped analytically by a least-squares,

distance-based method. This requires that a set of predetermined categories be

69

established and assigned geometric centroids to that distances from each item to each

category may be computed.

As suggested above, individual processes may be grouped according to their

dominant element(s) X or X + y while reserving z for the purpose of within-group

distinction. This approach was adopted for the current study. A total of sixteen canonical

categories result from this X+y categorization.

Geometric centroids were assigned to each canonical category based upon the

averages of the ranges of quadrant values they represent. Each of the four single-letter

categories (i.e., X only) were assigned a centroid defined by 88% in the dominant

quadrant, with the other three quadrants evenly dividing the remainder. The 88% figure

represents the midpoint of the 75%-100% range that defines a single-letter category.

Similarly, two-letter processes were assigned a centroid defined by 63% in the dominant

quadrant and 19% in the next dominant quadrant, with the other quadrants dividing the

remainder. The 63% figure represents the midpoint of the 51%-75% range that would

characterize the dominant quadrant in this case. The 19% figure represents the midpoint

of the remaining 37% that is available for the secondary quadrant. Table 4-5 summarizes

the resulting set of centroids for each canonical category.

Table 4-5. Centroids of canonical categories based on an X+y naming convention

%A %B %C %D %A %B %C %D

A 88 4 4 4 C 4 4 88 4

A+b 63 19 9 9 C+a 19 9 63 9

A+c 63 9 19 9 C+b 9 19 63 9

A+d 63 9 9 19 C+d 9 9 63 19

B 4 88 4 4 D 4 4 4 88

B+a 19 63 9 9 D+a 19 9 9 63

B+c 9 63 19 9 D+b 9 19 9 63

B+d 9 63 9 19 D+c 9 9 19 63

70

4.5.2 Ordering Groups by Similarity in Feedback Quality

The preceding discussion has concerned the grouping of subjects based on similarities

in their pattern distributions. Because pattern distribution is directly related to feedback

quality, a grouping based on pattern distribution can be made to express similarity in

feedback quality as well, by ordering the categories according to their relative feedback

quality. Having defined the centroids of each canonical category, each may be evaluated

and ranked so that categories having a similar quality may be placed near each other in a

classification chart.

Each canonical category was assigned a relative feedback quality rank by computing

a weighted sum of its defined pattern distribution. Weights were selected to reflect the

general quality level associated with each pattern. Type A was given a weight of 2 to

reflect the two aspects that account for its high feedback quality (minimum parameter

quantity and maximum parameter identity). Types B and D were both assigned a weight

of 1 to reflect the presence of only one of these aspects. Type C was given a weight of

zero because it lacks either aspect. This resulted in the following scoring formula:

feedback quality score = 2(A) + 1*(B+D).

This formula was then used to compute a feedback quality score for each canonical

category, with A, B, and D representing the defined centroid values for each category.

For instance, the category A+d has centroid values of A = 63, B = 9, and D = 19, leading

to a relative feedback quality rank of 154. Applying the above scoring formula to all

sixteen canonical categories results in nine quality ranks as shown in Table 4-6, ranging

from the highest feedback quality (A) to lowest (C).

Table 4-6. Quality ranking of canonical categories

1 2 3 4 5 6 7 8 9

A A+d A+b A+c D+a B+a D B D+b B+d D+c B+c C+a C+d C+b C

71

A classification chart may then be constructed to reflect this quality ranking, as

shown in Figure 4.19. When individual processes are placed within this chart (as

indicated by the symbol ###), they may then be distinguished not only by their placement

within a certain canonical category (which communicates similarity in pattern

distribution) but also by the position of their category within the chart (which

communicates similarity in feedback quality).

Pattern: A A+d A+b A+c D+a B+a ...

###

###

...

###

###

Quality Rank: 1 2 3 4 ...

Figure 4.19. Portion of the feedback quality classification format

4.6 Conclusion

The discrete feedback quality measure was developed as a measure of iterative

character that is potentially relevant to issues concerning design outcome. Application of

the measure to an individual design process involves the construction of a design

timeline, the analysis of the timeline in terms of parameter quantity and parameter

identity patterns, and the conversion of these patterns into a 2x2 feedback quality profile.

Profiles of individual processes may then be grouped based on similarities in pattern

distribution and in feedback quality by applying the X+yz naming convention and placing

named processes into the classification chart of Figure 4.19.

In closing this chapter, we now turn toward the issue of applying the measure to

empirical data. The remaining chapters of this document describe the empirical phase of

this study, in which data is gathered and measured in a test application of the feedback

quality measure. In Chapter 5, a data collection instrument is developed for the purpose

of gathering empirical data. The development of this instrument also serves as an

72

example of how a parametric design task may be instrumented. Chapter 6 describes the

use of this instrument in a data gathering exercise, which results in the collection of two

distinct sets of data. Chapter 7 describes the application of the measure to this data and

builds a validity argument based on the results of the analysis.

73

5 A Data Collection Instrument

Having proposed a measure of iterative character, the picture is not complete without

addressing its practical application to research. This chapter has two goals. First, it

describes a data collection instrument that was used in the current study to gather data

with which the feedback quality measure of iterative character could be validated. The

goal here is simply to make it possible for others to understand the origin of this data.

Second and more importantly, it addresses the conditions for application of the measure

in other experimental settings, so that other instruments may be developed around other

experimental design tasks, using this instrument as an example.

By necessity, the development of the data collection instrument described in this

chapter took place early in the project so that empirical data could be gathered to help

inform the development and selection of the measure. The considerations that guided the

choice and development of this instrument apply independently of the final form of the

measure and are instructive toward the development of different instruments involving

different experimental design tasks. The discussion in this chapter reconstructs these

considerations and presents them as if the instrument is being constructed for the first

time. This perspective allows the discussion to focus on the considerations that apply to

the selection and development of any similar instrument and to provide a complete

example of the steps involved in doing so.

5.1 Selecting a Subject Design Task

The first question in constructing an instrument is that of selecting an experimental

design task that the subjects are to perform and from which the instrument will record

data. In the current study, some of the considerations in this choice relate to the goal of

validating the measure. These include the choice of a particularly iterative design task so

that the data collected will be likely to have a strong iterative character that can easily be

detected. Another consideration was to select a task that could be easily instrumented to

collect data automatically rather than through a more laborious method such as verbal

protocol analysis. Therefore the process about to be described applies particularly to

74

parametrically structured design tasks that have been implemented as interactive

software.

These considerations acted in addition to more general concerns relating to the type of

data that must be collected to apply the measure in a more generic experimental setting.

Development of a new instrument would more likely be dominated by these concerns.

First and most importantly, the design task should provide opportunity for variations in

its iterative solution. Second, the design task should be one in which assimilation and

feedback events may easily be recognized and associated with specific design parameters.

These preferences suggest a virtual prototyping design task. Virtual prototyping

refers to the representation of a design artifact as a geometric computer model in a

sufficiently complete form that issues such as interference, physical properties, and

performance of the artifact can be predicted via the model without the need for

construction and evaluation of a physical prototype [Calkins et al. 1998]. This approach

is increasingly popular among engineering design firms [Adam 1993], [Blanchard 1996],

[Beckert 1996].

To the designer, one of the primary advantages of virtual prototyping is the ability to

generate and evaluate alternative designs without building a physical prototype of each.

Whereas the traditional building and testing of physical prototypes would involve a

significant amount of physical manipulation and social interaction that would have to be

manually observed and interpreted, the emphasis on interactive computer modeling

means that a large portion of the designer’s activity leaves evidence in the form of

keystrokes, mouse clicks, screen views, and the like. Furthermore, because both

generation and evaluation take place within this environment, feedback and its effect on

subsequent design decisions might specifically be traced.

Unfortunately, virtual prototyping systems that are in use in professional settings

[King 1998, Stewart and Hallenbeck 1997] are proprietary, and so are not readily

accessible for instrumentation for the purpose of data collection. Also, these systems are

quite complex and require significant training to become proficient, which would tend to

limit the population of potential subjects.

75

An alternative to a professional virtual prototyping system might be found in a

parametrically structured design task that has been computationally modeled.

Computationally modeling a parametric design problem allows one to generate and

evaluate candidate solutions by entering various parameter values and computing

resultant performance on demand. This leads to the availability of feedback at a very low

cost, and suggests that a computer-modeled parametric design problem would support if

not encourage a particularly iterative, feedback-reliant design process. Parametrically

structured design problems have a high degree of structure that leads to a relatively well-

bounded solution process. This also makes parametric problems good candidates for

modeling computationally because the performance of a proposed design may generally

be predicted as a function of its parameter values.

A number of realistically complex design problems have been modeled

parametrically and then computationally modeled in an interactive computer-based

design environment. One example is West Point Bridge Designer [NEEDS 2000], an

educational software application that allows students to specify and test designs for a

truss bridge. This problem is presented parametrically in that the component materials,

their dimensions and other properties, and their physical relationships may be specified

by the designer, resulting in a candidate solution that may be tested and modified at will.

One of the stated advantages of the software is the enabling of more iterations than would

be possible if the building of a physical prototype were the only means of evaluating

candidate designs [Ressler 2000].

Parametric design tools can also be found in recreational design applications that are

increasingly diverse. For example, one web-based tool allows consumers to design

custom shoes interactively by selecting various zones on a generic shoe design and

assigning any of dozens of possible design options to each, resulting in a dynamically

generated rendering of the resultant design and its purchase price [Goldberg 2000].

Another allows home brewers to design recipes for beer by entering ingredient quantities

and other variables that determine color, alcohol content, and style characteristics [Riley

1998]. These examples suggest that a large population of computationally modeled

parametric design tasks exist that could potentially be instrumented to serve as platforms

for the gathering of empirical data.

76

5.2 Virtual Car Educational Software

University courses in engineering design can provide a rich setting for empirical

research on the design process. At the University of Washington, one example of such a

course is Engineering 100, Introduction to Engineering Design. ENGR 100 is an elective

course open to freshman engineering students and others interested in engineering design

[Safoutin et al. 2000], [Kramlich and Fridley 1998]. The course is primarily activity-

based, with an emphasis on two group design projects of four to five weeks duration that

include construction and testing of student designs in a competitive atmosphere.

One of the projects taught in this course employs an educational design software

application that follows a parametric design model. As an instructor of this course, the

author of the current study developed this application to demonstrate the virtual

prototyping approach to engineering design. The software, called Virtual Car, allows

students to design a small toy car in a parametric manner, evaluate candidate designs in

terms of projected performance, and create construction templates that can be used to

build a faithful and fully operative physical version of a modeled design. The software

has been used for several years in this course, and has become available to other colleges

and universities nationwide as a result of its selection as a finalist candidate in an

educational software competition [NEEDS 2001].

A large proportion of the Virtual Car design process is performed in direct interaction

with the software. Because of this, a large proportion of the designer’s activity is likely to

take place in the form of user interaction with the software and so might be automatically

captured by instrumenting the software to record such activity. This suggests that the

iterative component of the design activity may also be captured if the software were

properly instrumented.

5.2.1 The Design Task

The task presented to a designer using Virtual Car is to design a small toy car that is

powered by a wind-up spring (also known as a power spring or clock spring). Figure 5.1

77

illustrates the components of a typical Virtual Car. The body of the car is built from

layers of a thick sheet material such as foamcore or corrugated cardboard. Two distinct

body layer shapes are employed and can be seen in the figure. Two layers of an "outer"

shape form the two side walls of the vehicle and provide bearings for the front and rear

axles. A variable number of layers of an "inner" shape form the inner core of the car.

These layers define the form of the longitudinal center of the vehicle body, and include a

circular or octagonal cutout which form a chamber for the spring.

Figure 5.1. Functional components of a Virtual Car

The spring engine, a wound-up strip of springy plastic or metal, resides in the

chamber formed by the inner and outer layers. One end of the spring engine is connected

to the drive axle and the other is anchored to the inner surface of the spring chamber. The

spring may be any width or length specified by the designer, and typically is fabricated

from plastic material cut from a plastic soda bottle. In the figure, a rear wheel drive

configuration is depicted, the spring being wound to propel the car to the right. A front-

wheel drive configuration would wind the spring in the opposite direction to travel

leftward. In all-wheel drive versions, an additional spring chamber exists at the opposite

end of the vehicle, identical to the first chamber. The shape of the inner and outer layers

is specified directly by the designer, with the exception of the spring chamber which is

superimposed upon and supercedes the specified shape. The size and location of the

78

spring chamber is computed by the software as a function of specified spring length,

drive configuration, and other parameters, and then superimposed on the specified inner

shape.

Typical design goals are either to maximize the speed with which the car will reach a

finish line 15 feet away, or to maximize the total travel distance before the spring

becomes unwound. A valid design must avoid skidding of the drive wheels due to too

little traction or too much power. Constraints include a limit on car size and wheel size

(to accomodate the printing of construction templates on a standard sheet of paper), and a

limitation on the width of the spring (six inches).

The Virtual Car design software provides a simple design environment with which to

conduct the design process. It presents the designer with a fully parameterized

representation of the design task, allowing the designer to specify parameter values

interactively and request immediate feedback about various aspects of the resultant

performance of the evolving design. Despite a relatively small number of design

parameters, a very large number of alternative designs are possible, generating many

opportunities to carry out iterative redesign cycles.

The designer is initially provided with a set of default designs that have moderate

performance. The designer proceeds by modifying one or more of the default designs to

produce a more competitive design. This typically involves iterating through many

candidate designs by experimenting with different parameter values, such as car shape,

wheel size, spring dimensions, and type of drive (front, rear, or all-wheel). Each

combination of parameter values represents a design alternative for which feedback can

be gained instantly about performance metrics such as appearance, speed, and travel

distance.

Once an acceptable design has been found, a faithful physical prototype may be

constructed by printing parts-cutting templates on an ordinary printer and cutting them

out of a stackable material to form the body, in a layered method similar to 3-D printing

or rapid prototyping [Thilmany 2001]. Figures 5.2 and 5.3 illustrate these steps and show

a fully assembled example prototype.

79

Figure 5.2. Paper parts-cutting templates and finished parts

Figure 5.3. Fully assembled Virtual Car

The interface centers around a main design interface by which parameter values are

specified, and several feedback modes that deliver various sorts of information about the

performance of the design that is described by the current parameter settings. The

interface is depicted in Figures 5.4 through 5.9.

The Design mode is depicted in Figure 5.4. It provides a parameter selection

interface that allows design parameter values to be specified and thus assimilated into the

design. On selection of a design parameter button, appropriate controls such as edit

80

fields, drawing tools, or buttons appear, with which the designer may specify a parameter

value.

Figure 5.5 depicts the first feedback mode, the Build mode. It provides feedback on

visual appearance and relationship of components only.

The Analyze mode is depicted in Figure 5.6. It provides feedback on mass, center of

mass, and normal forces on the wheel-ground interfaces. These are useful for

anticipating vehicle stability and traction, although they do not report actual performance.

The Simulate mode, depicted in Figure 5.7, provides performance feedback. It

displays computed performance metrics including time to finish line, maximum powered

distance, and top speed. It also provides the opportunity to step through an animation

showing variations in traction and propulsion during powered travel.

The Race mode shown in Figure 5.8 provides feedback on speed relative to other

modeled designs. It displays a set of animated bars representing the movement of all

currently defined vehicles, as if competing in a race. Travel distance is also reported, but

only if the vehicle has insufficient distance capacity to reach the finish line (15 feet).

Figure 5.9 shows the Preview mode, which allows the designer to confirm the number

and printability of the body construction templates.

Figure 5.10 depicts the Print interface, which does not directly provide feedback, but

simply allows the designer to print a report that summarizes the design, or to print its

construction templates. Use of the Print interface suggests a decision to construct a

physical prototype of the design in order to gain real-world performance feedback.

Figure 5.11 shows a printed report for the "Racer" default design, describing its

parameter settings and performance characteristics. Figure 5.12 shows a set of printed

templates for this design.

81

Figure 5.4. Design mode

82

Figure 5.5. Build mode

83

Figure 5.6. Analyze mode

84

Figure 5.7. Simulate mode

85

Figure 5.8. Race mode

86

Figure 5.9. Preview mode

87

Figure 5.10. Print interface

Figure 5.11. Printed report

88

Figure 5.12. Printed templates for Racer design

Virtual Car as a Data Collection Instrument

Virtual Car represents an authentic design problem with a nontrivial solution process.

Additionally, its short learning curve makes it an attractive candidate as a platform for

collecting empirical data on the design process, particularly in settings that are likely to

employ a subject population of novice designers such as undergraduate students.

The task of transforming the software into a data collection instrument consists of two

major steps: identification of the design parameters that govern the problem, and the

addition of instrumentation to record assimilation and feedback events with respect to

these parameters. The next sections describe these steps.

89

5.2.2 Identifying Design Parameters

The first step in instrumenting a design problem for data collection is the

identification of design parameters. The Virtual Car design problem is modeled as a set

of twenty-four distinct design parameters, which are depicted in Figure 5.13. Each

physical component of the vehicle may have its physical dimensions specified, as well as

the type of material of which it is made. Several other parameters specify shapes of

vehicle components such as the outer layers, inner layers, and spring chamber, as well as

the number and location of spring chambers to specify a rear-wheel-drive, front-wheel-

drive, or four-wheel drive vehicle.

Figure 5.13. Virtual Car design parameters

The design parameters delineate a complete definition of a vehicle design. Many of

the parameters may be specified as numeric values, such as spring width or drive wheel

diameter. Others such as the shapes that define the car body and the choice of front, rear,

or all-wheel drive are non-numeric parameters that are entered by selecting from a list,

clicking a radio button, selecting a point on the screen, or drawing a shape interactively

with the mouse. Table 5-1 lists the design parameters, their value types, and the means of

specification.

90

5.2.3 Identifying Assimilation and Feedback

The next step is in identifying actions through which assimilation and feedback take

place. Because the design artifact is inherently parametric, assimilation is visible in the

specification of parameter values. Parameter values are specified in the Design mode via

keystrokes, mouse clicks, list selection, or a combination of these actions. Figure 5.14

highlights the interface elements through which assimilation and feedback take place.

Assimilation modes are entered via a set of ten buttons and lists, each of which initiate a

parameter editing dialog specific to a given component. Feedback modes are entered via

six buttons representing: a 3-dimensional rendition for checking of geometry; an analysis

of physical properties such as mass, normal force on each wheel, and center of mass; a

simulation mode that offers feedback on speed and maximum travel distance; a race

mode that races the current design against other defined designs; a preview mode

depicting the paper templates to be printed, and a print mode that provides feedback in

the form of a printout. Figure 5.15 summarizes the feedback opportunities made

available via these modes.

Figure 5.14. Interface elements involved with assimilation and feedback

5.3 Instrumentation

The goal of instrumentation was to record in a transparent manner a comprehensive

history of user interaction such as parameter settings (i.e., assimilation) and performance

tests (i.e., feedback requests). Codes were assigned to help track and record these

activities.

91

Table 5-1. Design parameters and means of specification

Parameter Value Type Means of specification
Spring width Numeric Keystrokes
Spring length Numeric Keystrokes

Drive axle diameter Numeric Keystrokes
Other axle diameter Numeric Keystrokes

Drive wheel diameter Numeric Keystrokes
Other wheel diameter Numeric Keystrokes

Drive Axle Length Numeric Keystrokes
Other Axle Length Numeric Keystrokes

Spring-to-chamber-volume ratio Numeric Keystrokes
Friction drag force Numeric Keystrokes

Added weights Numeric + Point Keystrokes, mouse
Drive type (chamber location) [Rear, Front, All] Mouse click

Front wheel location Point Mouse click
Spring chamber style [Circular, Octagonal] Mouse click

Outer layer shape Polygon Mouse clicks
Inner layer shape Polygon Mouse clicks

Outer body layer material Defined board material List selection
Inner body layer material Defined board material List selection

Drive wheel material Defined board material List selection
Front wheel material Defined board material List selection
Drive axle material Defined axle material List selection
Front axle material Defined axle material List selection

Spring material Defined spring material List selection
Tread material Defined tread material List selection

Figure 5.15. Feedback opportunities in Virtual Car

92

5.3.1 Codes for Design Parameters and Feedback Modes

Unique codes were assigned to each design parameter and feedback opportunity so

that they may be recorded. These codes are shown in Tables 5-2 and 5-3.

Table 5-2. Codes assigned to design parameters

Code Parameter Abbreviation
1 Outer body layer material OBMat
2 Inner body layer material IBMat
3 Drive wheel material DWMat
4 Front wheel material FWMat
5 Drive axle material DAMat
6 Front axle material FAMat
7 Spring material SpMat
8 Tread material TrMat
9 Outer layer shape OShape
10 Inner layer shape IShape
11 Drive type DType
13 Front wheel location FWLoc
14 Spring width SpWid
15 Spring length SpLen
16 Drive axle diameter DADia
17 Other axle diameter OADia
18 Drive wheel diameter DWDia
19 Other wheel diameter OWDia
21 Drive Axle Length DALen
20 Other Axle Length OALen
22 Added weights Weight
25 Spring to Case Area ratio CaseRatio
28 Friction force Friction
29 Case style CStyle

Table 5-3. Codes assigned to assimilation events and feedback events

Code Feedback level
0 Increment parameter value (type)
1 Exit parameter value (set)
2 Apply edited parameters
3 Build 3-D rendition
4 Check physical properties
5 Simulate performance
6 Race animation
7 Preview templates
8 Print templates
9 Built prototype (unimplemented)

93

5.3.2 The Design Portfolio File

As the designer uses the software, the codes corresponding to every parameter setting

and feedback request that takes place are written to a file on the local hard drive, called

the Design Portfolio file. The file also receives peripheral information such as the name

of the car design, the date and time of each action, the parameter value that was set, and

the last computed performance of the current design (travel time to finish line, maximum

distance, and maximum speed). If the designer works with a single Design Portfolio file

during the entire design process, a complete record of all user interaction with the

software is recorded, even if it consists of multiple design sessions. Some example

entries that might compose this type of file are shown in Table 5-4.

Table 5-4. Example excerpt of Design Portfolio file

1

2

3

4

5

6

7

8

9

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

1

1

1

F

W

D

-

-

-

1

.

0

7

1

5

.

9

0

1

8

.

8

0

0

.

4

7

M

y

D

e

s

i

g

n

1

1

/

2

7

/

0

1

1

2

:

0

1

:

2

4

P

M

S

e

t

D

r

i

v

e

-

-

0

0

0

0

0

0

2

1

1

F

W

D

-

-

-

1

.

0

7

1

5

.

9

0

1

8

.

8

0

0

.

4

7

M

y

D

e

s

i

g

n

1

1

/

2

7

/

0

1

1

2

:

0

1

:

2

4

P

M

D

o

D

r

i

v

e

-

-

0

0

0

0

0

0

1

1

1

A

W

D

-

-

-

1

.

0

7

1

5

.

9

0

1

8

.

8

0

0

.

4

7

M

y

D

e

s

i

g

n

1

1

/

2

7

/

0

1

1

2

:

0

1

:

2

7

P

M

S

e

t

D

r

i

v

e

-

-

0

0

0

0

0

0

2

1

1

A

W

D

-

-

-

1

.

0

7

1

5

.

9

0

1

8

.

8

0

0

.

4

7

M

y

D

e

s

i

g

n

1

1

/

2

7

/

0

1

1

2

:

0

1

:

2

7

P

M

D

o

D

r

i

v

e

-

-

0

0

0

0

0

0

1

1

1

R

W

D

-

-

-

1

.

0

7

1

5

.

9

0

1

8

.

8

0

0

.

4

7

M

y

D

e

s

i

g

n

1

1

/

2

7

/

0

1

1

2

:

0

1

:

3

1

P

M

S

e

t

D

r

i

v

e

-

-

0

1

0

0

0

0

2

1

1

R

W

D

-

-

-

1

.

0

7

1

5

.

9

0

1

8

.

8

0

0

.

4

7

M

y

D

e

s

i

g

n

1

1

/

2

7

/

0

1

1

2

:

0

1

:

3

1

P

M

D

o

D

r

i

v

e

-

-

0

1

0

0

0

0

0

1

4

1

-

-

-

1

.

0

7

1

5

.

9

0

1

8

.

8

0

0

.

4

7

M

y

D

e

s

i

g

n

1

1

/

2

7

/

0

1

1

2

:

0

1

:

5

1

P

M

T

y

p

e

S

W

i

d

-

-

-

-

-

-

-

-

0

1

4

1

.

-

-

-

1

.

0

7

1

5

.

9

0

1

8

.

8

0

0

.

4

7

M

y

D

e

s

i

g

n

1

1

/

2

7

/

0

1

1

2

:

0

1

:

5

1

P

M

T

y

p

e

S

W

i

d

-

-

-

-

-

-

-

-

0

1

4

1

.

5

-

-

-

1

.

0

7

1

5

.

9

0

1

8

.

8

0

0

.

4

7

M

y

D

e

s

i

g

n

1

1

/

2

7

/

0

1

1

2

:

0

1

:

5

1

P

M

T

y

p

e

S

W

i

d

-

-

-

-

-

-

-

-

1

1

4

1

.

5

-

-

-

1

.

0

7

1

5

.

9

0

1

8

.

8

0

0

.

4

7

M

y

D

e

s

i

g

n

1

1

/

2

7

/

0

1

1

2

:

0

1

:

5

2

P

M

E

x

i

t

S

W

i

d

-

-

0

0

0

0

0

0

2

1

4

1

.

5

-

-

-

1

.

0

7

1

5

.

9

0

1

8

.

8

0

0

.

4

7

M

y

D

e

s

i

g

n

1

1

/

2

7

/

0

1

1

2

:

0

1

:

5

2

P

M

D

o

S

p

r

W

i

d

-

-

0

0

0

0

0

0

5

4

0

1

-

-

-

-

1

.

0

9

1

4

.

8

9

1

8

.

0

0

0

.

4

5

M

y

D

e

s

i

g

n

1

1

/

2

7

/

0

1

1

2

:

0

1

:

5

5

P

M

V

P

D

y

n

a

m

i

c

0

0

0

0

0

0

0

0

6

5

0

1

1

-

-

-

1

.

2

3

1

4

.

8

9

1

8

.

0

0

0

.

4

5

M

y

D

e

s

i

g

n

1

1

/

2

7

/

0

1

1

2

:

0

2

:

0

0

P

M

V

P

R

a

c

e

0

0

0

0

0

0

0

0

KEY:
Column Contents
1 Assimilation/feedback identifier
2 Parameter code or feedback level code
3-6 Parameter values
7-10 Performance values
11 Car name
12-13 Date and time of event
14 Name of action
15-22 Advisory codes

Column 1 contains a code that identifies the action as either assimilation or feedback

and also provides information about the level of involvement. Codes 0, 1, and 2

94

represent three components of an assimilation event: typing or clicking a parameter value,

completing an edit of a parameter value, and formally applying the parameter value to the

design. Code 0 indicates a single keystroke or other action that partially increments a

parameter setting, such as when the user types one digit of a value into an edit field.

Code 1 indicates that the user has completed entering a parameter value for a given

parameter, either by tabbing into or clicking on a different edit field that represents a

different parameter value, or by clicking on a button that leads to a feedback mode. Code

2 is generated whenever the user presses the Return key after editing a value or presses

the "Apply" button, which is provided as a way of assuring the user that a value has been

accepted. Codes 3, 4, 5, 6, 7, and 8 represent the six feedback modes that the Virtual Car

software provides: Build, Analyze, Simulate, Race, Preview, and Print, respectively.

The code in Column 2 applies primarily to assimilation events, identifying the

parameter that was edited according to the parameter codes shown in Table 5-2. If the

event was a feedback request, this column contains an identifier for the feedback mode,

ranging from 301 for the Build mode to 801 for the Print mode.

Columns 3 through 6 are reserved for the actual parameter value as represented in its

edit field at the time of the event. Design parameters have a single value and require only

one of these fields; the additional fields are reserved for future use.

Columns 7 through 10 report the last computed performance results at the time of the

event. Column 7 reports the time in seconds to reach 15 feet; Column 8 reports top speed

in feet per second; Column 9 reports powered distance in feet, and Column 10 reports the

mass of the vehicle in pounds.

Columns 11 through 14 contain the current name of the car design, the date and time

of the event, and an abbreviated name for the event to help in manually interpreting the

file.

Columns 15 thru 22 are binary (0 or 1) codes reserved for advisories associated with

the eight possible design error states that the Virtual Car software detects and reports to

the user. Respectively, a value of 1 for Columns 15 through 22 indicates: car will break

95

traction (skid) on accelerating; car will not travel minimum distance of 15 feet; front axle

is not connected to body; spring case is not connected to body; added weights are not

connected to body; car body exceeds the maximum size for a printed template; spring

cases of a four-wheel-drive car intersect each other; and portions of the body are floating

freely from the main body.

5.4 Deploying the Instrumented Virtual Car

The instrumented version of Virtual Car was designed to be deployed transparently

with minimal constraint on the design process of the subject. The primary aspect of data

collection would involve the generation, maintenance, and collection of a Design

Portfolio file unique to each subject. By asking each subject to maintain a single Design

Portfolio file during his or her design process, data could be collected automatically and

transparently as the subject used the software in the normal way.

Upon launching Virtual Car, the subject is prompted to either create a Design

Portfolio (in the case of a new design), or to locate a preexisting Design Portfolio (in the

case of continuing a design process). After the file has been created or located, activity is

transparently recorded in the file until the user exits the software.

Once the subject has completed the design process, the Design Portfolio file must be

collected. In order to most reliably identify the termination of the design process and

match it to the true outcome of the process, the final car design should also be collected

so that its performance characteristics may be compared to that reported in the Design

Portfolio. Once the Design Portfolio files have been collected, analysis may proceed by

extracting relevant information from the file and converting it to an A-F-DP timeline.

For the purpose of the current study, specialized program routines were written to allow

the loading of a Design Portfolio file and the generation of its A-F-DP timeline. This step

in the analysis of the data is discussed further in Chapter 7.

96

6 Data Collection

The instrumented version of Virtual Car was deployed to collect data from volunteer

subjects enrolled in two sections of Engineering 100 during Autumn Quarter 2001 and

Winter Quarter 2002. This chapter describes the data collection procedures and the

resultant data set.

6.1 Deployment of Instrument

Sections of Engineering 100 that teach the Virtual Car project typically hold the

project during the second half of the quarter. At this time students have completed two

other projects, a bridge design project and an engine dissection project [Kramlich and

Fridley 1999, Safoutin et al. 2000]. The project begins with an introduction to the project

and its design goals, physical principles governing the performance of vehicles, general

strategies for achieving good performance, and a demonstration of the Virtual Car

software. Several individual homework assignments are assigned, during what otherwise

is primarily a group-based design effort.

During each of Autumn Quarter 2001 and Winter Quarter 2002, one section of

Engineering 100 used the instrumented version of Virtual Car and acted as a source of

design process data. Data collection took place by means of an individual homework

assignment (Appendix A). This assignment asked each student to download the software

and use it to develop a personal car design, followed by the answering of several essay

questions about their experience in designing it. Each student was also asked to submit

the Design Portfolio file and the file describing their final car design as evidence of their

design effort. The files and essays were collected and graded by the instructor during the

first two weeks of the project, and copies were retained for potential use in the study. At

a point during the last week of each quarter, a consenting process was conducted. After

the class was informed of the study, each student was given an opportunity to complete a

consent form (Appendix B) by which they could confidentially grant or deny permission

97

for the data represented in their design files and essays to be incorporated into the study.

The consent form was administered by a person unassociated with the study.

Following completion of the individual homework assignment, the project shifted into

a group phase. Groups of four to five students collectively designed and built two to

three physical prototypes over a three to four week period as is typical for the project.

The work of each group was largely conducted during scheduled class hours, and

consisted of a combination of work with the Virtual Car software, group discussion, and

physical construction. Because the instrumented version of the software was in use, this

activity tended to result in the creation of one or more Design Portfolio files residing on

each workstation at the end of the project. These files would naturally contain a large

number of entries, representing a mix of individual designing and interactive group

designing. This group data was not directly included in the study, but was collected for

possible use in developing and testing candidate measures and for ensuring that

individual design files that were submitted as evidence of individual design activity were

in fact unique from the group data collected on the workstation.

After each quarter was over, data was extracted from the individual data files and

individual reflective papers that were collected. The instructor gathered the reflective

essays and individual homework data files of consenting individuals. For possible

reference purposes, the group data files of consenting groups were also collected from

group workstations. The essay and individual data file of each consenting subject was

then matched by name. For each pair of essay and data file corresponding to one

individual, data was extracted into an independent data set that was labeled by a random

code consisting of a number representing the individual and a letter representing the

design team to which the individual belonged. This extraction process resulted in the

names of individual students, group names, and all other direct or indirect identifiers

being stripped and replaced with the random code.

The Fall and Winter quarter data collection episodes were conducted identically in all

but one respect. In the Fall quarter, subjects were asked to create their personal design

with the goal of achieving a "good balance" between speed and distance. In the Winter

quarter, subjects were asked to design exclusively for maximum speed. Both groups

98

designed under the constraints that the car must not skid on acceleration and must travel

at least 15 feet.

6.2 Data Collected

Two data sets were gathered, one from Autumn Quarter 2001 and another from

Winter Quarter 2002. The raw data of each set consisted of three primary components as

described below.

Individual Design Portfolio files

Each subject turned in the Design Portfolio file that was created during the process of

designing the car for the homework assignment. These files contain the data representing

the individual design process of each subject.

Individual Car Designs

Subjects also submitted a Virtual Car Design File (.vcar) describing their final design.

These files were collected in order to confirm that the process described in the Design

Portfolio matched the car that was actually designed.

Essay questions

Several essay questions were posed about the experience of designing the car. These

questions were collected to provide information that might potentially be useful in

interpreting the activity recorded in the design portfolio. The questions were assigned via

an assignment web page linked from the course web page. The questions were the same

in both quarters, with the exception of one question that pertained to the goal of the

design process, which varied between quarters. The questions are outlined in Appendix

A. This appendix also provides a facsimile of the assignment itself.

The raw data were then processed as described in the next section, forming two

distinct data sets for analysis.

99

6.3 Data Preparation

Three primary issues were involved in preparing the raw data for analysis.

Consent

Of thirty-four students enrolled in Autumn Quarter 2001, two denied consent and five

did not complete a consent form due to absence, leaving twenty-seven consenting

subjects. Of thirty-six students enrolled in Winter Quarter 2002, two denied consent and

seven did not complete a form, leaving twenty-seven consenting subjects.

Data Availability

Because the task was a graded homework assignment, students were naturally

motivated to complete it for a grade but could not be required to do so. Accordingly

some students who later provided consent had chosen not to complete the assignment,

while others had failed to complete portions of it. In the Autumn quarter, five subjects

did not submit a Design Portfolio file, leaving a total of twenty-two consenting subjects

for which data was available. Furthermore, one of these subjects failed to provide

answers to the essay questions, and another did not provide a self-rating of iterative

character, leaving a total of twenty consenting subjects for which all data was available.

In the Winter quarter, three did not turn in a Design Portfolio file, leaving a total of

twenty-four consenting subjects with portfolio data. Additionally, two of these failed to

report a self-rating of iterative character in their essay homework.

Data Validation

Some data from consenting subjects failed to be validated as representing the subject’s

actual effort. Several subject data sets from Autumn 2001 were set aside because the

parameter values and performance estimates recorded in the Design Portfolio did not

appear to match the car design that was actually turned in. This judgement was made in

cases when either of the following was true: (a) terminal performance values recorded in

the Design Portfolio did not match the performance of the submitted design, or (b) the

100

Design Portfolio was empty or did not record enough activity to have credibly developed

the reported design.

Some data sets presented initial interpretive issues that were resolved by further

analysis. All Design Portfolio files were inspected to determine whether the process was

conducted in a single design session or over multiple sessions. Some files contained

more than one session, typically including any of: (a) a short initial period in which the

designer appeared to be exploring various software functions, without saving a design,

(b) a later period during which the design was checked and printed but not edited, or only

edited to explore some other options and then changed back again, (c) short sessions that

took place during scheduled class time, included a variety of parameter edits but did not

seem to result in progression of a car design, and did not lead to a saved design. Where

necessary, the main design session was isolated from these undirected episodes by

segmenting the Design Portfolio file into a main session file that was responsible for the

submitted design and one or more others containing the contents of the undirected

activity. The main session files were analyzed while the others were retained for context.

Several data sets were set aside because the submitted Design Portfolio was identical

to the group portfolio that had accumulated on the group’s assigned workstation, and not

enough evidence could be found in either the submitted design or the portfolio file to

determine which portion of the file represented the design process associated with the

submitted design. These data sets were primarily in the Autumn 2001 data.

6.4 Resultant Data Sets

The final Autumn 2001 data set consists of sixteen matched sets of essays and design

portfolios and four group data files. The Winter 2002 data set consists of twenty-four

matched sets of essays and design portfolios. The two data sets are summarized in Tables

6-1 and 6-2.

These data sets form the basis of the data analysis that is conducted in Chapter 7.

101

Table 6-1. Summary of data from consenting subjects, Autumn 2001

Code Portfolio Essay Car file
Portfolio
size (KB)

Number of
feedback
episodes

1 N/C - - - - -
2 N/C - - - - -
3 N/C - - - - -
4 N/C - - - - -
5 N/C - - - - -
6 N/C - - - - -
7 N/C - - - - -
8 n/a - - - - -
9 n/a - - - - -

10 A411 * * * 148 144
11 A433 * * * 56 27
12 B241 * * * 140 98
13 C695 * * * 28 15
14 X250 * * * 40 27
15 X397 * * * 52 45
16 Y318 * * * 60 58
17 Y389 * * * 44 35
18 Y402 * * * 140 61
19 Y418 * * * 64 32
20 K235 * * * 28 22
21 K238 * * * 68 68
22 K333 * * * 60 35
23 D477 * * * 40 26
24 W255 * * * 16 16
25 W455 * * * 24 14
26 C629 x * * 36 -
27 D642 x * * 80,60 -
28 W462 x * * 280 -
29 W584 x * * 308 -
30 Y206 x * * 12 -
31 X703 x n/a * 152 -
32 X714 n/a * n/a - -
33 X815 n/a * n/a - -
34 D948 n/a * n/a - -

16 24 22
validated
portfolios

essays cars

Key:
N/C = no consent * = turned in and validated
n/a = not turned in x = turned in but not validated

102

Table 6-2. Summary of data from consenting subjects, Winter 2002

Subject
code Portfolio Essay Car file

Portfolio
size (KB)

Number of
feedback
episodes

1 N/C - - - - -
2 N/C - - - - -
3 N/C - - - - -
4 N/C - - - - -
5 N/C - - - - -
6 N/C - - - - -
7 N/C - - - - -
8 N/C - - - - -
9 N/C - - - - -

10 R246 * * * 69 55
11 R815 * * * 172 153
12 R819 * * * 47 13
13 S185 * * * 128 156
14 S368 * * * 56 86
15 S446 * * * 29 25
16 S527 * * * 223 228
17 S742 * * * 214 253
18 F234 * * * 13 7
19 F265 * * * 34 22
20 F336 * * * 62 73
21 L258 * * * 187 91
22 L564 * * * 71 81
23 U487 * * * 203 91
24 U750 * * * 168 140
25 G357 * * * 69 48
26 G365 * * * 68 52
27 G654 * * * 161 116
28 E150 * * * 101 117
29 E747 * * * 27 13
30 H245 * * * 169 152
31 H456 * * * 7 6
32 H837 * * * 38 13
33 U767 * * * 176 89
34 F135 n/a * n/a - -
35 G773 n/a * n/a - -
36 F345 n/a n/a n/a - -

24 26 23
validated
portfolios

essays cars

Key:
N/C = no consent * = turned in and validated
n/a = not turned in x = turned in but not validated

103

7 Data Analysis

In this chapter, the feedback quality measure of iteration is applied to the data

described in Chapter 6. The purpose of this application is to collect evidence regarding

the validity and utility of the measure in a research application.

First, an approach is described for evaluating the validity of the measure by

examining the results of its application. Next, general procedures for analyzing the data

are described, followed by application of the measure to the data. The result of the

application is then evaluated to gather evidence concerning the validity and utility of the

measure.

7.1 Basis for Evaluating Validity

Evaluating the validity of a new measure can be a difficult task. Normally, one might

seek to demonstrate convergent validity, by showing that the measure provides

measurements that are consistent with those of known measures applied to the same data

[Rosenthal and Rosnow 1984]. This approach is not applicable to the current study

because proven measures of iterative character are not available for comparison. In this

sort of situation, it is helpful to adopt the perspective that validity is not proven per se but

is supported by a validity argument, which consists of supporting evidence and

explanatory rationale that accumulates over time [Cronbach 1988]. The problem then

becomes one of establishing a firm foundation for such an argument. A foundation may

be begun by collecting evidence that the measure is applicable to real data, and that its

measurements are consistent with expectations regarding the iterative character of

processes to which it is applied.

In this study, the assigned task possesses several distinctive attributes that suggest

several expectations regarding the iterative character of its solution process. First,

104

because the task is oriented toward a design goal that is not trivial to achieve, one would

not expect subjects to conduct the design process at random but rather to direct it

according to some intentional pattern that would be distinguishable from a random one.

Second, because both groups were presented with a very similar design task, one would

expect that the processes conducted by both groups would deviate from random in a

similar way. Third, the assigned task might be expected to encourage a particularly

iteration-rich solution process, because feedback about the performance of the evolving

design is always available instantly at little cost. This contrasts it with other tasks that

might impose a realistic cost on feedback and thereby discourage iteration.

If the data analysis shows that the measure has provided measurements consistent

with these expectations, a foundation has been established for a validation argument upon

which further studies may build. The next several sections investigate this question.

7.2 Analysis Procedures

To assist in processing of the data, data analysis functions were added to the research

version of Virtual Car. Routines were implemented for loading a selected Design

Portfolio file and displaying and printing its Assimilation-Feedback-Design Parameter

(A-F-DP) timeline. The timeline is created by scanning the file for assimilation events

(i.e., parameter edits) and feedback events (i.e., entry into a feedback mode), matching

each assimilation event with its corresponding design parameter, and plotting both types

of events in their relative temporal sequence. The routines were tested by applying them

to selected Design Portfolio files from the Fall 2001 group and additional files that had

been collected from group workstations. The data sets from Fall 2001 and Winter 2002

were then processed by use of these routines, resulting in two printed sets of timelines.

For each subject, the discrete feedback quality measure was then applied by manual

examination of parameter quantity and parameter identity patterns according to the

procedure described in Chapter 4. Issues relating to correct and consistent interpretation

of the timeline data were addressed prior to analysis and are summarized in Appendix C.

105

Sample timelines for two subjects are shown in Figure 7.1. Each timeline is continued

on a second line. The upper timeline is that of Subject A368 (Fall quarter), and consists

of a total of 85 feedback episodes. The lower timeline is that of Subject Y318 (Winter

quarter), and consists of 57 feedback episodes. On the left edge of each timeline, the

abbreviated name of each edited design parameter is shown in order of visitation

(abbreviations are as shown in Table 5-2). Each feedback event is indicated by a short

vertical line, while each assimilation event is indicated by a series of rectangles and/or

circles. Narrow rectangles indicate individual keystrokes as a number is typed, or

individual clicks as a shape is drawn. A wider rectangle or a circle indicates that the edit

has been completed. The circle is generated if the user pressed the "Apply" button or hit

Return to signal completion of an edit operation prior to entering a feedback mode. This

action has no design function but is the typical way by which a designer ends an edit

operation.

Each feedback episode in the figure has been annotated with a letter (A, B, C, or D) to

indicate its feedback quality classification. The process of classifying each feedback

event in this manner is the primary manual act in coding a timeline. The letters may then

be entered into a spreadsheet in order to calculate percentages A, B, C, and D that form

the basis of the feedback quality profile of the process.

After the timeline analysis was completed, a small sample of timelines were re-

analyzed to check for mistakes. It is important to remember that application of the

feedback quality measure to a timeline representation does not require subjective

judgement on the part of the analyst; human error was the primary concern here. The

analysis of this sample did not reveal any significant mistakes.

106

107

7.3 Description of Results

7.3.1 Discrete Feedback Quality

The result of the feedback quality analysis is summarized in Table 7-1. Four

percentages for the feedback patterns A, B, C, and D are shown for each process, along

with their means, standard deviations, and range.

Table 7-1. Feedback quality measurements, Fall 2001 and Winter 2002

Fall 2001 Winter 2002
Subject % A % B % C % D Subject % A % B % C % D

K235 14 0 19 67 A185 45 7 15 31

K238 63 3 7 27 A368 28 4 7 61

K333 14 7 38 40 A446 42 6 10 42

A411 56 4 11 30 A527 50 2 11 37

A433 50 1 22 27 A742 25 9 30 36

B241 45 7 20 28 F234 33 8 42 17

C695 29 24 40 7 F265 48 6 13 33

D477 40 9 19 32 F336 63 1 9 28

W255 60 0 7 33 R246 44 5 21 30

X250 23 7 28 42 R815 46 5 13 36

X397 25 7 23 45 R819 0 45 39 17

W455 8 8 54 31 L258 46 9 17 29

Y318 46 4 19 32 L564 60 8 7 25

Y389 56 11 19 15 U487 40 7 17 36

Y402 35 8 14 43 U750 47 5 14 34

Y418 32 9 17 42 U767 49 4 6 41

G357 21 9 27 43

G365 45 3 13 39

G654 45 16 24 15

E150 55 5 8 32

E747 25 0 25 50

H245 33 5 20 42

H456 40 7 13 40

H837 8 25 41 25

Mean 37.2 6.8 22.3 33.8 Mean 39.1 8.4 18.4 34.1
Std dev 17.4 5.7 12.5 13.5 Std dev 15.1 9.3 10.8 10.5

Min/Max 8/63 0/24 7/54 7/67 Min/Max 0/63 0/45 6/42 15/61

108

Table 7-2 expresses the data of Table 7-1 in the form of feedback quality profiles.

Percentages for A, B, C, and D are printed in the upper-right, upper-left, lower-left, and

lower-right quadrants respectively.

Table 7-2. Feedback quality profiles, Fall 2001 and Winter 2002

Fall 2001 Winter 2002

K235 W255 A185 R246 G357
0 14 0 60 7 45 5 44 9 21
19 67 7 33 15 31 21 30 27 43

K238 X250 A368 R815 G365
%B %A 3 63 7 23 4 28 5 46 3 45
%C %D 7 27 28 42 7 61 13 36 13 39

Key K333 Y418 A446 R819 G654
7 14 9 32 6 42 45 0 16 45
38 40 17 42 10 42 39 17 24 15

A411 X397 A527 L258 E150
4 56 7 25 2 50 9 46 5 55
11 30 23 45 11 37 17 29 8 32

A433 W455 A742 L564 E747
1 50 8 8 9 25 8 60 0 25
22 27 54 31 30 36 7 25 25 50

B241 Y318 F234 U487 H245
7 45 4 46 8 33 7 40 5 33
20 28 19 32 42 17 17 36 20 42

C695 Y389 F265 U750 H456
24 29 11 56 6 48 5 47 7 40
40 7 19 15 13 33 14 34 13 40

D477 Y402 F336 U767 H837
9 40 8 35 1 63 4 49 25 8
19 32 14 43 9 28 6 41 41 25

109

7.3.2 Categorization Based on Discrete Feedback Quality

Tables 7-3 and 7-4 assign each process to its nearest canonical category by manual

application of the X+y naming convention as described in Chapter 4. Also as described

in that chapter, the categories are ranked in order of their relative feedback quality rank.

The rank 1 represents the best quality, corresponding to a Type A-dominant process.

Table 7-3. Feedback quality classification, Fall 2001
Rank 1 2 3 4 5 6 7 8 9

Category A A+d A+b A+c D+a B+a D B D+b B+d D+c B+c C+a C+d C+b C
Members K238 Y389 X397 K235 C695 W455

A411 Y402 K333
A433 Y418 X250
B241
D477
W255
Y318

Count 0 7 0 1 3 0 0 0 0 0 3 0 1 1 0 0
Percentage 50% 37.5% 12.5%

Table 7-4. Feedback quality classification, Winter 2002
Rank 1 2 3 4 5 6 7 8 9

Category A A+d A+b A+c D+a B+a D B D+b B+d D+c B+c C+a C+d C+b C
Members A185 G654 A368 A742 R819 F234 H837

A527 A446 G357
F265 H456
F336 E747
R246
R815
L258
L564
U487
U750
U767
G365
E150
H245

Count 0 14 0 1 0 0 4 0 0 0 2 1 1 1 0 0
Percentage 62.5% 29.2% 8.3%

Referring to Table 7-3, it may be seen that the Fall 2001 data was predominantly

classified A-dominant, with a significant showing of D-dominance. Only two processes

110

deviated from this trend by exhibiting a C+a or C+d pattern. In all, only six of the sixteen

canonical categories were occupied, with the greatest absences in B-dominant and C-

dominant categories. In the Winter 2002 data depicted in Table 7-4, the picture is much

the same. The great majority of processes were classified as A+d, with other smaller

showings in primarily D- and C-dominant categories.

Tables 7-5 and 7-6 aggregate the canonical categories into several larger categories

representing the most dominant quadrant. The D- and B-dominant categories are merged

into a single category to reflect their similar feedback quality ranks. As shown in both

tables, processes in both groups were primarily A-dominant, ranging from 50% in Fall

2001 to 62.5% in Winter 2002. The B and D population amounted to 37.5% in the Fall

group and 29.2% in Winter. C-dominant processes were the smallest category in both

groups, comprising 12.5% in Fall and 8.3% in Winter.

Table 7-5. Comparison of percentages in major categories, Fall and Winter

Group A-dominant
D- or B-
dominant C-dominant total

Fall 2001 50.0 % 37.5 % 12.5 % 100%
Winter 2002 62.5 % 29.2 % 8.3 % 100%

Table 7-6. Comparison of frequencies in major categories, Fall and Winter

Group A-dominant
D- or B-
dominant C-dominant n

Fall 2001 8 6 2 16
Winter 2002 15 9 2 24

7.4 Comparison of Results to Expectations

These feedback quality measurements are now related to expectations regarding the

iterative character of the observed processes.

111

7.4.1 Expectation 1: Both Groups Design Nonrandomly

If the design task does not favor a random solution process, the measurements would

be expected to indicate that both groups designed nonrandomly. Demonstrating this

result would consist of showing that measurements of both groups are statistically distinct

from the measurements expected if the processes were random.

The issue of defining a "random" design process is a fairly complex one. A precise

definition requires that several judgements be made regarding the number of design

parameters that the designer considers and how the process is conducted. This issue is

addressed in Appendix F. In this analysis, we will make the assumption that a random

process results in an equal likelihood that a feedback episode will be classified as Type

A, B, C, or D. The discussion in Appendix F suggests that this assumption is reasonable

for a problem having a small number of design parameters, and for the evaluative purpose

at hand it represents a more conservative assumption than one that attempts to account for

the number of parameters that were available to the subjects in this study.

In the Fall data set (n=16), eight processes were categorized as Type A, six as either

Type B or D, and two as Type C. If each type were equally likely, the expected

distribution would have been four A, eight B/D, and four C. These cases are compared in

Table 7-7.

Table 7-7. Observed distribution vs. random expectation, Fall 2001

Fall Qtr (n=16) A B,D C
Expected (random) 4 8 4 16

Observed 8 6 2 16
12 14 6

� � = 5.5, p = 0.064

Fisher exact test: p = 0.38

112

By inspection, the distribution of Fall processes appears to differ from random. A

significance test based on the chi-squared statistic indicates a 6.4% chance that this

variation could result from random chance.

Because two of the expected values are smaller than 5, the suitability of the chi-

squared statistic as a measure of significance is called into question. The Fisher exact

test, which is considered preferable to the chi-squared test [Zar 1996] and is valid for

small sample sizes, was employed as an alternative. This test indicates a 38% probability

that the observed effect could result from random variation. The small size of the Fall

sample (n = 16) makes it difficult to judge the significance of this variation by either test.

The Winter data set had a larger sample size (n = 24). Fifteen processes were

categorized as Type A, seven as either Type B or D, and two as Type C. The expected

distribution for a random process would have been six A, twelve B/D, and six C. These

cases are compared in Table 7-8.

Table 7-8. Observed distribution vs. random expectation, Winter 2002

Winter Qtr (n=24) A B,D C
Expected (random) 6 12 6 24

Observed 15 7 2 24
21 19 8

� � = 18.2, p = 0

Fisher exact test: p = 0.03

By inspection, it is apparent that the distribution of Winter processes differs from

random. Here, the chi-squared statistic indicates that the variation from random is

significant (p = 0). The Fisher exact test provides a similar conclusion (p = 0.03).

The problem presented by the small size of the Fall sample might be alleviated by

merging the Fall and Winter groups together. This is statistically appropriate only if there

is reason to believe that the two groups are similar. This issue will be revisited in a later

section after the similarity of the two groups has been examined.

113

7.4.2 Expectation 2: Both Groups Design Similarly

Because the task presented to both groups was similar, one would expect that both

groups would differ from random in a similar way. The measure would thus gain

additional support if its measurements indicate that the two groups are similarly

distributed among Types A, B, C, and D to a degree that is statistically significant. this

can be evaluated by comparing the distribution of Fall data to that of Winter.

By inspection, it is apparent that both groups are dominant in Type A and favor Types

B and D secondarily. Is this similarity significant? If so, one would expect that a

significance test would return a relatively large p value, indicating a lack of significant

difference between the two groups.

In comparing Winter to Fall, the Fall data set becomes the expected case and is

converted to a set of expected values based on a sample size n=24 as shown in Table 7-9.

Table 7-9. Comparison of Winter to Fall (expected values)

A B,D C
Expected (Fall) 12 9 3 24

Winter 15 7 2 24
27 16 5

� � = 1.53, p = 0.47

Fisher exact test: p = 0.70

The chi-squared test indicates that the two groups are not significantly different (p =

0.47). The Fisher exact test delivers a similar conclusion (p = 0.70). These results

suggest that the measurements are consistent with our expectation that Winter and Fall

should be quite similar in their distribution among each category.

114

7.4.3 Expectation 3: Both Groups Favor Type A Iteration

We now examine the nature of the similarity between the two groups. It may be

argued that the Virtual Car-based design task encourages a particularly Type A and Type

D process. Because feedback is available at any time with little penalty in terms of cost

or time, single variables may be submitted for feedback as easily as multiple variables.

Given the higher quality of feedback in the former case, Type A and D iteration should be

favored if the process is nonrandom. Furthermore, designing for speed largely involves

repeated optimization of several individual parameters that control a tradeoff between

propulsive force and traction. This iterative optimization process represents Type A

iteration. One would therefore expect the measurements to show that both groups were

similar in being distributed specifically toward Type A iteration.

Table 7-10 compares the A-dominance of the Fall group (A = 8, other = 8) to the

expected values for a random process (A = 4, other = 12). The chi-squared test indicates

that the Fall group differs significantly from the random case (p = 0.02). However, the

Fisher exact test yields a less optimistic outcome (p = 0.27).

Table 7-10. Comparison of Fall A-dominance to random expectation

Fall 2001 A-dominant other
Expected (random) 4 12 16

Observed 8 8 16
12 20

� � = 5.33, p = 0.02

Fisher exact test: p = 0.27

Table 7-11 depicts the analysis for the Winter group. Both the chi-squared and Fisher

exact tests indicate that the Winter group is significantly different from random with

regard to its Type-A dominance.

115

Table 7-11. Comparison of Winter A-dominance to random expectation

Winter 2002 A-dominant other
Expected (random) 6 18 24

Observed 15 9 24
21 27

	
 = 18.0, p = 0
Fisher exact test: p = 0.02

These results suggest that the measurements are generally consistent with our

expectations that both groups should favor Type A iteration. The uncertainty of this

conclusion with respect to the Fall group results in part from the small size of the Fall

sample, and might be addressed by combining the groups. This analysis is performed in

the next section.

7.4.4 Effect of Combining Groups

With regard to Expectations 1 and 3, it was difficult to demonstrate the significance

of the effect in the Fall group because its small sample size does not provide sufficient

statistical power. However, the analysis of Expectation 2 demonstrated that the two

groups are not significantly different. This allows us to re-examine Expectations 1 and 3

by combining the Fall and Winter data. When combined, the two groups create a sample

size of 40 processes that should be sufficient to determine significance.

Table 7-12 shows the result of significance tests on the combined data with respect to

Expectation 1. According to both tests, the combined group varies significantly from the

expected random case.

Table 7-12. Observed distribution vs. random expectation, combined

Fall+Winter (n=40) A B,D C
Expected (random) 10 20 10 40

Observed 23 13 4 40
33 33 14

	
 = 23.0, p = 0
Fisher exact test: p = 0.01

116

Table 7-13 shows the result of significance tests on the combined data with respect to

Expectation 3. Again, both the chi-squared and the Fisher exact test indicate that the

combined group is significantly A-dominant.

Table 7-13. Comparison of combined Winter/Fall A-dominance to random expectation

Fall+Winter A-dominant other
Expected 10 30 40
Observed 23 17 40

33 47
� � = 22.5, p = 0.00

Fisher exact test: p = 0.01

These observations serve to strengthen the case that the measurements are consistent

with Expectation 1 and Expectation 3.

7.5 Summary

This analysis has provided evidence that the measure has yielded measurements that

agree well with expectations dictated by the nature of the design task.

Expectation 1 suggested that the measure should indicate that designers did not

design randomly. Under a particularly conservative definition of a random process (as

compared to alternative definitions outlined in Appendix F), the measure does indicate

that the Winter group as well as the combined Fall and Winter group vary significantly

from random. The statistical power provided by the Fall data alone is too limited to draw

this conclusion with confidence, although the observed effect does point in the right

direction. In all cases, the conclusion would be strengthened if any of the alternative

definitions of a random process were to be employed instead.

Expectation 2 suggested that the measure should indicate that both the Fall and

Winter groups designed in a similar way. The measurements indicate that the Fall and

Winter groups are not significantly different, which is consistent with this expectation.

117

Because the satisfaction of Expectation 2 supports the similarity of the two groups, it

becomes possible to group the Fall and Winter data together to improve the statistical

power of the sample. The combined data provides additional support for the conclusion

that the measurements were consistent with Expectation 1.

Expectation 3 suggested that the measure should indicate that both groups similarly

favored Type A iteration. Measurement of the Winter group is strongly consistent with

this expectation. Again, the Fall group alone lacks sufficient statistical power to draw a

this conclusion with confidence, but when combined with the Winter group, the

conclusion is strengthened.

These results suggest that the feedback quality measure of iteration has been

successful in this application, and demonstrates that it is sufficiently valid to express

similarity and difference among individual design processes in this example application.

The result of this application appears sufficient to encourage further trials of the measure,

through which additional evidence for validity may be accumulated.

118

8 Conclusions

This study was concerned with the question,

How may one objectively draw distinctions among observed design

processes in terms of relevant aspects of their iterative character?

It has sought to develop, apply, and validate a measure of iteration that would

facilitate empirical research into the role of iteration in design and its influence on design

outcome.

A conceptual framework of design iteration led to the recognition of a particularly

interesting form of iteration, known as feedback iteration. A model of design was

advanced to suggest several timeline formats for representation of an observed design

process in terms of feedback activity. One timeline format was found to express two

types of feedback patterns suggestive of an influence on outcome. These patterns formed

the basis of a measure known as the discrete feedback quality measure of iterative

character. An instrument was then developed for collecting data sufficient to apply the

measure. Two sets of data were collected representing design processes of novice

designers. Individual processes were then differentiated in terms of their iterative

character by applying the feedback quality measure.

This chapter reviews the findings of this study with regard to the validity of the

measure, its utility in design research, its application to other design tasks, and future

work that might employ or improve the measure.

8.1 Validity of Measure

The study has demonstrated that the measure may be successfully applied to

empirical data, and that the measurements it provides in this example application are

consistent with what would be expected given the nature of the design task and the

119

subjects that performed the processes. This leads to the conclusion that the measure was

effective at measuring real differences in the iterative character of the processes to which

it was applied. Specifically:

(1) The measure indicates that both groups designed in a nonrandom manner as

expected.

(2) The measure indicates that both groups designed similarly, consistent with the

expectation resulting from the similarity of their design task.

(3) The measure indicates that both groups similarly favored Type A iteration, as

expected due to the nature of the design task.

These results provide initial support for the validity of the feedback quality measure

of iteration, and encourage further trials of the measure.

8.2 Utility of Measure

The study has shown that the measure makes it possible to draw distinctions among

observed design processes in terms of concrete metrics relating to their iterative

character. Previous approaches to measurement of iteration have relied on labor-

intensive methods that require human judgement, such as verbal protocol methods. This

measure, when applied to a parametric design task that has been appropriately

instrumented, reduces the need for human judgement. Empirical measurement of

iterative character may therefore be achieved at a much lower cost than that of previous

methods.

Because the measure can be implemented in an automatic way, the measure could

potentially be applied in real-time, as a design process takes place. For example, the

measure may be integrated into a professional virtual prototyping system to provide

feedback to the designer regarding the iterative character of his or her process as it

unfolds. Alternatively, the measure could be made available to a student designer who is

120

carrying out a design process in an educational setting. The availability of such real-time

feedback could potentially serve as a means to stimulate introspection about the design

process for purposes relating either to performance or education.

8.3 Application to Other Design Tasks

Other Parametric Tasks

The data in this study was collected by applying an instrumentation procedure to a

parametrically-structured, interactively-performed design task. This type of design task

was selected in part due to practical considerations, such as the preference for a task that

is rich in feedback iteration, the potential to instrument it for automatic data collection,

and its accessibility for instrumentation. These considerations are potentially relevant to

anyone who seeks a design task that may be studied with respect to its iterative character.

It follows that others might seek to study other design tasks of this type. If the candidate

task has an explicitly parametric structure, and assimilation and feedback activity is

interactive and can be instrumented, it should be possible to base a data collection

instrument upon the task by applying an instrumentation approach similar to that

described in Chapter 5.

Tasks that are structured parametrically but not interactively performed might

potentially be employed as a source of data as well. An example of such a task would be

any conventional design problem that has been framed in terms of design parameters and

functional requirements, such as those described by Suh [1990]. For these tasks, design

parameters are well defined and should be easy to identify. However, the lack of an

interactive implementation means that assimilation and feedback activity cannot be

captured automatically through direct instrumentation of parameter edits and feedback

requests. This activity must be manually identified through more traditional methods

such as verbal protocols. This would require the development and application of a coding

scheme to identify this activity, and verification of the result by checking the interrater

reliability of multiple coders. Once assimilation and feedback have been isolated in this

121

manner, it should be straightforward to plot these events on a timeline and create

feedback quality profiles.

Non-parametric Tasks

The ability to measure iterative character in a parametrically structured design task is

a significant development in its own regard. However, the applicability of the measure to

non-parametric tasks is an important issue as well. Many studies have presented subjects

with unstructured tasks that could be characterized as non-parametric tasks; for example,

the conceptual design of a playground [Atman et al. 1996], [Atman and Bursic 1998] or

the design of a remote controlled robot that transports items between two points

[Valkenburg and Dorst 1998]. The feedback quality measure of iteration would have

greater utility if it could be applied to relatively unstructured design tasks such as these,

as a supplement to other process measures that can be applied to these tasks.

Applying the feedback quality measure involves the measurement of two key

patterns: the number of distinct modifications that have taken place each time the design

is evaluated (parameter quantity), and the repetition of modifications to specific aspects

of the design (parameter identity). A parametric structure provides a framework that

facilitates the identification of specific aspects of the design and their modifications.

Absent this structure, these features may be more difficult to recognize.

As suggested by Suh [1990], most if not all design problems may potentially be

understood in terms of reasonably distinct design parameters and functional requirements.

One approach to applying the measure to non-parametric design activity might begin by

analyzing protocol data for evidence of design parameters and functional requirements

that are implicitly being considered by the designer. Virtually any design task is likely to

elicit statements that concern these fundamental elements of the problem, whether or not

they have been formalized in the problem structure. Once recognized, they may then act

as pointers to assimilation and feedback activity, just as in a task that is parametrically

structured.

122

Verbal protocols are a particularly rich data source from which many specific types of

information may be extracted. The information necessary to detect design parameters,

functional requirements, and assimilation or feedback activity is not fundamentally

different from that which is typically collected in verbal protocol studies. Several verbal

protocol studies have already demonstrated the use of coding categories that isolate

information of this sort.

As one example, consider the playground design task of Atman and Bursic [1998].

Verbal content was characterized according to four descriptive categories: "design step",

"information processed", "activity", and "object". In particular, "information processed"

represented the general topic that the subject was addressing (if any), such as budget,

material costs, or safety. "Object" represented the physical component of the artifact that

the information referred to (if any), such as a swing set, a slide, or landscaping. If the

subject were to make the statement "we could build a slide out of two or three sheets of

plywood for about twenty dollars", the information processed would be coded as material

cost, and the object coded as slide.

This statement could additionally be coded with respect to whether it represents

assimilation or feedback (if either), and which design parameter it concerns (if any). The

various physical components of the emerging playground, such as its play equipment and

the site, may be considered design parameters because they are what the designer

modifies in order to fulfill the functional requirements of the playground. Thus the

"object" category has the effect of identifying design parameters. The "information

processed" could be inspected further to identify specific content as evidence of

assimilation or feedback. A statement could be coded as assimilation if it contains

information that advances the design state, or as feedback if it evaluates the current

design state. The example statement above would then be coded as assimilation, with

respect to the design parameter slide. That is, it advances the state of the design by

proposing an inexpensive plywood slide. Any subsequent statements that act to evaluate

this proposal would be coded as feedback. For example, the statement "a plywood slide

might give people splinters -- better not do that" would be coded as feedback, because it

represents an evaluation of the current design state.

123

Several other studies have successfully applied similar coding categories to a variety

of design tasks. A verbal protocol study by Gero and McNeill [1998] observed designers

conducting the design of a bicycle luggage rack. Their set of coding categories included

"proposing a solution" (e.g., "the way to solve that is...") and "evaluating a proposed

solution" (e.g., "this solution is faster and cheaper than..."). Statements assigned to these

categories could alternatively be coded as assimilation and feedback, respectively. Other

studies of electrical circuit design and mechanism design have employed categories such

as "assimilate", "specify", and "verify" [Ullman et al. 1988], [Stauffer and Ullman 1991],

which similarly relate to assimilation and feedback. The fact that these coding categories

were successfully applied to a diverse group of design tasks suggests that it is feasible to

develop a coding scheme that allows the feedback quality measure to be applied to non-

parametric design tasks.

8.4 Future Work

In light of these results, several opportunities for additional research are suggested.

Additional Measures

One area concerns the further investigation of other measures of iteration that are

related to the feedback quality measure.

As implemented in this study, the feedback quality measure represents an average

pattern distribution for an entire process. It does not express local variations in pattern

distribution during the process. As shown in Figure 8.1, the pattern distribution of a

design process can vary substantially as the process unfolds. The variation may be

depicted cumulatively as in Figure 8.1(a) and 8.1(c), or locally by tracking a moving

window of a fixed number of events, as shown in Figure 8.1(b) and 8.1(d). Such

variations might have utility in relating a process to other processes, or to design

outcome. Future work will investigate this issue.

124

(a) A368, cumulative (b) A368, local window

(c) Y318, cumulative (d) Y318, local window

Figure 8.1. Examples of within-process variation in feedback quality

The iterativity ratio, discussed in Appendix D, is a simple measure of relative reliance

on assimilation and feedback. It carries interesting implications that suggest utility of the

measure in design research. In a design situation in which the cost of obtaining feedback

is relatively high, one would expect a relatively low iterativity value because a natural

reaction would be to submit more parameter changes per feedback request. On the other

hand, in a design environment in which synthesis of design decisions is difficult, costly,

or unreliable, one might expect the designer to rely more heavily on analysis through

feedback, causing the process to have a relatively high iterativity value. In an

experimental setting, one might explore this relationship by manipulating these variables,

observing their effect on iterativity, and relating iterativity to design outcome.

The computed version of the feedback quality measure, discussed in Appendix E, is

an alternative to the discrete feedback quality measure that was applied in the current

125

study. The computed measure accounts for parameter quantity more accurately by taking

into account the actual number of parameters that act to confound a feedback event. The

computed measure also allows depiction of feedback quality as a point on a plane rather

than as a quad of four percentages. This opens the possibility of depicting many

processes on a scatter plot and clustering the points visually or analytically in order to

achieve similar groupings. The utility of this measure relative to the discrete measure

remains to be investigated.

Applications

Useful applications of the feedback quality measure are another potential subject for

further work. As foreshadowed previously, real-time implementation of the measure

during the execution of a design process suggests that a program of research might be

conducted to investigate the educational or professional utility of the measure. The

measure might also be applied retrospectively to previously gathered verbal protocol data

so that the results may be compared to other measures originally derived from the

protocol analysis. This would call for the further development of reliable coding

procedures for applying the measure to non-parametric design problems.

Finally, application of the measures to parametric design problems other than the one

employed in this study remains to be demonstrated. This study has demonstrated the

application of the measure to a parametrically structured, interactively implemented

design problem. While the conditions for application of the measure to this type of

problem are well established, the measure has yet to be applied outside of an interactive

parametric environment.

Design researchers are continually seeking authentic design problems that may be

studied effectively in an experimental setting. By itself, the capability demonstrated here

for the measurement of iterative character in parametrically-structured, interactive design

tasks amounts to a significant development for design research. It provides a systematic

method to gather data from a rapidly growing variety of design environments, many of

which are accessible to novice subjects. Parameterizing subject design problems and

126

moving them to instrumented interactive computer based environments for study

purposes could represent a new approach to the empirical study of design processes,

providing an alternative to verbal protocol analysis at a dramatically lower cost.

8.5 Conclusion

In summary, this study has provided a new and unique measure of design iteration

that may be employed in empirical research regarding influences of iterative character on

design outcome. The measure has been shown to be applicable to empirical data, has

provided results that were effective and replicable in an example application, and can be

implemented at a relatively low cost. These results suggest a strong potential for similar

success in a variety of similar research applications.

127

References

Adam, J. A., "Virtual Reality is for Real", IEEE Spectrum, v30 n10, pp. 22-29 (1993).

Adams, R., "Cognitive Processes in Iterative Design Behavior", Doctoral Dissertation,
College of Education, University of Washington (2001).

Adams, R., J. Turns and C. J. Atman, "Educating Effective Engineering Designers: The
Role of Reflective Practice", Designing in Context - Design Thinking Research
Symposium 5, December 18-20, Delft, The Netherlands (2001).

Afifi, A. A. and V. Clark, Computer-Aided Multivariate Analysis. Wadsworth Inc.,
Belmont, California (1984).

Ahmadi, R. and H. Wang, "Rationalizing Product Design Development Processes",
Working Paper, Anderson Graduate School of Management, UCLA (1994).

Atman, C. J. and K. M. Bursic, "Teaching Engineering Design: Can Reading a Textbook
Make a Difference?", Research in Engineering Design, v8 pp. 240-250 (1996).

Atman, C. J., K. M. Bursic, and S. L. Lazito, "An Application of Protocol Analysis to the
Engineering Design Process", Proceedings of the 1996 ASEE Annual Conference,
Session 2530 (1996).

Atman, C. J. and K. M. Bursic, "Verbal Protocol Analysis as a Method to Document
Engineering Student Design Processes", Journal of Engineering Education, pp.
121-132 (1998).

Atman, C. J., J. R. Chimka, K. M. Bursic, and H. L. Nachtmann, "A Comparison of
Freshman and Senior Engineering Design Processes", Design Studies, v20 n2, pp.
131-152 (1999).

Austin, S., J. Steele, S. Macmillan, P. Kirby and R. Spence, "Mapping the Conceptual
Design Activity of Interdisciplinary Teams", Design Studies, v22 pp. 211-232
(2001).

Ball, L. J., J. St. B. T. Evans and I. Dennis, "Cognitive Processes in Engineering Design:
A Longitudinal Study", Ergonomics, v37 n11, pp. 1753-1786 (1994).

Ball, L. J., J. St. B. T. Evans, I. Dennis and T. C. Ormerod, "Problem-solving Strategies
and Expertise in Engineering Design", Thinking and Reasoning, v3 n4, pp. 247-
270 (1997).

128

Banares-Alcantara, R., "Design Support Systems for Process Engineering - I.
Requirements and Proposed Solutions for a Design Process Representation",
Computers in Chemical Engineering, v19 n3, pp. 267-277 (1995).

Beakley, G. C, D. L. Evans, and J. B. Keats, Engineering: An Introduction to a Creative
Profession, 5th ed. New York: MacMillan Publishing Company (1986).

Beckert, B. A., "Venturing Into Virtual Product Development," Computer-Aided
Engineering, v15 n5, pp. 45-50 (1996).

Blanchard, D., "Ford Turns to Virtual Prototyping for Concurrent Engineering",
Intelligent Manufacturing, v2 n10, p. 23 (1996).

Blandford, S. and R. P. Hope, "Systematic Methods for the Problem Solving Process
With Particular Reference to Design", Proceedings of the IEEE, Part A, v132, pp.
199-212 (1985).

Bodker, S., "Understanding Representation in Design", Human Computer Interaction,
v13 pp. 107-125 (1998).

Braha, D. and O. Maimon, "The Design Process: Properties, Paradigms, and Structure",
IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and
Humans, v27 n2, pp. 146-166 (1997).

Braha, D. and O. Maimon, "The Measurement of a Design Structural and Functional
Complexity", IEEE Transactions on Systems, Man, and Cybernetics, Part A:
Systems and Humans, v28 n4, pp. 527-535 (1998).

Busby, J. S., "The Neglect of Feedback in Engineering Design Organizations", Design
Studies, v19, pp. 103-117 (1998).

Browning, T. R., "Use of Dependency Structure Matrices for Product Development Cycle
Time Reduction", Proceedings of the Fifth International Conference on
Concurrent Engineering: Research and Applications, Tokyo, Japan (1998).

Calantone, R. J. and C. A. Di Benedetto, "Performance and Time to Market: Accelerating
Cycle Time with Overlapping Stages", IEEE Transactions on Engineering
Management, v47 n2, pp. 232-244 (2000).

Calkins, D. E., W. Su and W. T. Chan, "A Design Rule Based Tool for Automobile
Systems Design", Society of Automotive Engineers Technical Paper Series, Paper
980397 (1998).

129

Chi, M. T. H., "Quantifying Qualitative Analyses of Verbal Data: A Practical Guide",
The Journal of the Learning Sciences, v6 n3, pp. 271-315 (1997).

Chimka, J. R. and C. J. Atman, "Graphical Representations of Engineering Design
Behavior", 1998 Frontiers in Education Conference, Session T2D, Tempe,
Arizona, November 4-7 (1998).

Christiaans, H. C. M., and K. H. Dorst, "Cognitive Models in Industrial Design
Engineering: A Protocol Study", 1992 ASME Design Theory and Methodology
Conference, DE-v42, pp. 131-137 (1992).

Cohen, M., J. Eliashberg and T-H. Ho, "New Product Design Strategy Analysis: A
Modeling Framework," in Management of Design: Engineering and Management
Perspectives, Dasu, S. and Eastman, C. (Eds.), Kluwer Academic Publishers, pp.
45-60 (1994).

Cooper, K. G., "The Rework Cycle: Part 1: Why Projects are Mismanaged", Engineering
Management Review, v21 n3, pp. 4-12 (1993).

Cronbach, L. J., "Five Perspectives on Validity Argument", in H. Wainer & H. I. Braun
(Eds.), Test Validity (pp. 3-17). Hillsdale, NJ: Lawrence Erlbaum (1988).

Cross, N., Engineering Design Methods. John Wiley & Sons Ltd, New York (1989).

Curtis, B., "Models of Iteration in Software Development", Iteration in the Software
Process: Third International Software Process Workshop, IEEE (1986).

Delaney, B., "Faster, Better, Cheaper -- NASA Visualizes the Solar System", IEEE
Computer Graphics and Applications, v17 n6, pp. 10-15 (1997).

Dieter, G. E. Engineering Design: A Materials and Processing Approach, 2nd ed. New
York: McGraw-Hill (1991).

Dixon, J. R., "On Research Methodology Towards a Scientific Theory of Engineering
Design", Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, v1 n3, pp. 145-157 (1987).

Duffy, V. and G. Salvendy, "Relating Company Performance to Staff Perceptions: the
Impact of Concurrent Engineering on time to Market," International Journal of
Production Research, v37 n4, pp. 821-834 (1999).

130

Dwarakanth, S. and K. M. Wallace, "Decision-making in Engineering Design:
Observations from Design Experiments", Journal of Engineering Design, v6 n5,
pp. 191-206 (1995).

Dwarakanth, S., L. Blessing, and K. Wallace, "Descriptive Studies: A Starting Point for
Research in Engineering Design", in Advances in Mechanical Engineering, T. S.
Mruthyunjaya (ed.), Narosa Publishing House: New Delhi (1996).

Eide, A. R. , R. D. Jenison, L. H. Mashaw, and L. L. Northup, Introduction to
Engineering Design. Boston, MA: McGraw-Hill (1998).

Eisenhardt, K. M. and B. N. Tabrizi, "Accelerating Adaptive Processes: Product
Innovation in the Global Computer Industry", Administrative Science Quarterly,
v40 pp. 84-110 (1995).

Eppinger, S., "Model-based Approaches to Managing Concurrent Engineering". Journal
of Engineering Design, v2 n4 (1991).

Eppinger, S. D., M. V. Nukala and D. E. Whitney, "Generalised Models of Design
Iteration Using Signal Flow Graphs", Research in Engineering Design, v9 pp. 112-
123 (1997).

Ericsson, K. A. and H. A. Simon, Protocol Analysis : Verbal Reports as Data. MIT
Press, Cambridge MA (1993).

Evbuomwan, N. F. O., S. Sivaloganathan, and A. Jebb, "A Survey of Design
Philosophies, Models, Methods, and Systems", Proceedings of the Institution of
Mechanical Engineers, v210, pp. 301-320 (1996).

Finger, S. and J. R. Dixon, "A Review of Research in Mechanical Engineering Design.
Part I: Descriptive, Prescriptive, and Computer-Based Models of Design
Processes", Research in Engineering Design, v1 pp. 51-67 (1989).

Ford, D. N. and J. D. Sterman, "Dynamic Modeling of Product Development Processes",
System Dynamics Review, v14 n1, pp. 31-68 (1998).

Fricke, G., "Successful Individual Approaches in Engineering Design", Research in
Engineering Design, v8 pp. 151-165 (1996).

Gebala, D. A. and S. D. Eppinger, "Methods for Analyzing Design Procedures", Third
International ASME Conference on Design Theory and Methodology, Miami, FL
(1991).

131

Gero, J. S. and T. McNeill, "An approach to the analysis of design protocols", Design
Studies, v19, pp. 21-61 (1998).

Goel, V., "A comparison of design and nondesign problem spaces", Artificial
Intelligence in Engineering, v9 pp. 53-72 (1994).

Goldberg, M., "Trendspotting in the New Economy", The Industry Standard, Nov 10
(2000).

Gotlieb, L., "Quality Comes to the Information Systems Function", CMA Magazine, v66
n7 p. 15 (1992).

Gunther, J. and K. Ehrlenspiel, "Comparing Designers from Practice and Designers with
Systematic Design Education", Design Studies, v20 pp. 439-451 (1999).

King, E., "Virtual prototyping keys American super car", Scientific Computing &
Automation, n4, pp. 52-54 (1998).

Konda, S., I. Monarch, P. Sargent and E. Subrahmanian, "Shared Memory in Design: A
Unifying Theme for Research and Practice", Research in Engineering Design, v4
pp. 23-42 (1992).

Kramlich, J. and J. Fridley, ENGR Restructuring Team Final Report, Appendix C: ENGR
100 Review/Revision Subcommittee Report, University of Washington College of
Engineering, June 1998. Located at http://www.engr.washington.edu/
restruct/engr/appenc.html (1998).

Kusiak, A., J. Wang, D. W. He and C-X. Feng, "A Structured Approach for Analysis of
Design Processes", IEEE Transactions on Components, Packaging, and
Manufacturing Technology - Part A, v18 n3, pp. 664-673 (1995).

Kusiak, A. and N. Larson, "Decomposition and Representation Methods in Mechanical
Design", Transactions of the ASME, v117 pp. 17-24 (1995).

Legendre, P., "Program K-means User’s Guide", Departement de sciences biologiques,
Universite de Montreal (2001).

Legendre, P. and L. Legendre, Numerical Ecology, 2nd English edition, Elsevier Science
BV, Amsterdam (1998).

Love, T., "Constructing a Coherent Cross-Disciplinary Body of Theory about Designing
and Designs: Some Philosophical Issues", Design Studies, v23 pp. 345-361 (2002).

132

Madanshetty, S. I., "Cognitive Basis for Conceptual Design", Research in Engineering
Design, v7 pp. 232-240 (1995).

Malhotra, A., J. C. Thomas, J. M. Carroll and L. A. Miller, "Cognitive Processes in
Design", International Journal of Man-Machine Studies, v12 pp. 119-140 (1980).

Marples, D. L. "The Decisions of Engineering Design", IRE Transactions on Engineering
Management, EM-8, pp. 55-71 (1961).

Merriam-Webster Inc., Webster’s Ninth New Collegiate Dictionary, Merriam-Webster
Inc., Springfield MA (1987).

Milligan, G. W. and M. C. Cooper, "An Examination of Procedures for Determining the
number of Clusters in a Data Set", Psychometrika, v50 pp. 159-179 (1985).

National Science Foundation, "Research Opportunities in Engineering Design", NSF
Strategic Planning Workshop Final Report, April 1996.

National Engineering Education Delivery System (NEEDS), Premier Courseware of 2000
(compact disc), University of California (Berkeley), located at
http://www.needs.org/engineering/premier/2000/winners.html (2000).

National Engineering Education Delivery System (NEEDS), Premier Courseware of 2001
- (compact disc), University of California (Berkeley), located at
http://www.needs.org/engineering/premier/2001/winners.html (2001).

Nukala, M. V., S. D. Eppinger and D. E. Whitney, "Generalized Models of Design
Iteration Using Signal Flow Graphs", 1995 ASME Design Theory and Methodology
Conference, Boston MA (1995).

Olson, G. M., J. S. Olson, M. Storrosten, M. Carter, J. Herbsleb and H. Rueter, "The
Structure of Activity During Design Meetings", in Design Rationale: Concepts,
Techniques, and Use, Lawrence Earlbaum Associates: Mahwah, NJ (1996).

Osborne, S. M., "Product Development Cycle Time Characterization Through Modeling
of Process Iteration", S.M. Thesis, M.I.T. Sloan School of Management (1993).

Oxman, R., "Observing the observers: research issues in analysing design activity",
Design Studies, v16 pp. 275-283 (1995).

Pahl, G. and Beitz, W., Engineering Design: A Systematic Approach. Design Council,
London (1988).

133

Palmer, S.E., "Fundamental aspects of cognitive representation", in Cognition and
Categorization, E. Rosch, B.B. Lloyd (eds.), Lawrence Erlbaum Associates,
Hillsdale NJ (1978).

Ressler, S. J., "The West Point Bridge Designer", 2000 Premier Award Submission
Package, Department of Civil and Mechanical Engineering, United States Military
Academy (2000).

Riley, M., "The Beer Recipator 2.2", located at http://hbd.org/cgi-bin/recipator/recipator
(1998).

Ringstad, P. R., "Early Component Design Controlled By Decisive Properties", Journal
of Engineering Design, v7 n1, pp. 39-54 (1996).

Rosenthal, R. and R. L. Rosnow, Essentials of Behavioral Research: Methods and Data
Analysis. McGraw-Hill, New York (1984).

Safoutin, M. J., "A Cognitive Model and FMEA Technique for the Analysis of
Interdisciplinary Design Teams in Terms of Member Communication", University
of Illinois Master’s Thesis (1990).

Safoutin, M. J. and D. L. Thurston, "A Communications-Based Technique for
Interdisciplinary Design Team Management", IEEE Transactions on Engineering
Management, v40 n4, pp. 360-372 (1993).

Safoutin, M. J. and R. P. Smith, "Classification of Iteration in Engineering Design
Processes", DTM-98-58, Tenth International ASME Design Theory and
Methodology Conference, Atlanta GA (1998).

Safoutin, M. J., C. J. Atman, R. Adams, T. Rutar, J. Kramlich and J. Fridley, "A Design
Attribute Framework for Course Planning and Learning Assessment", IEEE
Transactions on Education, v42 n2, pp 188-199 (2000).

Schon, D. A., "Problems, Frames, and Perspectives on Designing", Design Studies, v9 n3,
pp. 132-136 (1984).

Shah, J. J., D. K. Jeon, S. D. Urban, P. Bliznakov and M. Rogers, "Database
Infrastructure for Supporting Engineering Design Histories", Computer-Aided
Design,v28 n5, pp. 347-360 (1996).

Simon, H. A., The Sciences of the Artificial. The MIT Press (1969).

134

Smith, G. F. and G. J. Browne, "Conceptual Foundations of Design Problem Solving",
IEEE Transactions on Systems, Man, and Cybernetics, v23 n5, pp. 1209-1219
(1993).

Smith, R. P., S. D. Eppinger and A. Gopal, "Testing an Engineering Design Iteration
Model in an Experimental Setting", 1992 ASME Design Theory and Methodology
Conference, DE-v42, pp. 141-147 (1992).

Smith, R. P. and S. D. Eppinger, "Characteristics and Models of Iteration in Engineering
Design", 1993 International Conference on Engineering Design (ICED 93), pp.
564-571 (1993).

Smith, R. P., "Managing Risk by Reordering Tasks in Engineering Design", Seventh
International ASME Design Theory and Methodology Conference, Boston, pp.
585-591 (1995).

Smith, R. P., and S. D. Eppinger, "A Predictive Model of Sequential Iteration in
Engineering Design", Management Science, v43 n 8, pp. 1104-1120 (1997).

Sobek II, D. K., "Understanding the Importance of Intermediate Representations in
Engineering Problem-Solving", Working Paper, Mechanical and Industrial
Engineering Department, Montana State University, Bozeman MT (2001).

Stauffer, L. A., D. G. Ullman and T. G. Dietterich, "Protocol Analysis of Mechanical
Engineering Design", Proceedings of the International Conference on Engineering
Design (ICED 87), pp. 74-85 (1987).

Stauffer, L. A. and D. G. Ullman, "Fundamental Processes of Mechanical Designers
Based on Empirical Data", Journal of Engineering Design, v2 n2, pp. 113-125
(1991).

Stauffer, L. A., M. Diteman and R. Hyde, "Eliciting and Analysing Subjective Data about
Engineering Design", Journal of Engineering Design, v2 n4, pp. 351-366 (1991).

Stempfle, J. and P. Badke-Schaub, "Thinking in Design Teams - An Analysis of Team
Communication", Design Studies, in press (2002).

Steward, D. V., "The Design Structure System: A Method for Managing the Design of
Complex Systems", IEEE Transactions on Engineering Management, v28 n3, pp.
71-74 (1981).

135

Stewart, D. and D. Hallenbeck, "Three case histories of virtual prototypes to support
concurrent engineering", Professional Program Proceedings, Electronics
Industries Forum of New England, pp. 85-96 (1997).

Stilian, G. N., "PERT: A new management planning and control technique", AMA
Management Report no. 74, New York: American Management Association
(1962).

Suh, N. P., The Principles of Design. Oxford University Press (1990).

Sullivan, W. G., P-M. Lee, J. T. Luxhoj, and R. V. Thannirpalli, "A Survey of
Engineering Design Literature: Methodology, Education, Economics, and
Management Aspects", The Engineering Economist, v40 n1, pp. 7-40 (1994).

Taguchi, G., Introduction to Quality Engineering: Designing Quality into Products and
Processes, Asian Productivity Organization (1986).

Terwiesch, C. and C. H. Loch, "Measuring the Effectiveness of Overlapping
Development Activities", Management Science, v45 n4, pp. 455-465 (1999).

Thilmany, J., "Printing in three dimensions", Mechanical Engineering, v123 n5, (2001).

Thomke, S. H., "Managing Experimentation in the Design of New Products",
Management Science, v44 n6, pp. 743-762 (1998).

Thomke, S. H., E. A. von Hippel, and R. R. Franke, "Modes of Experimentation: An
Innovation Process - and Competitive - Variable", Research Policy, v27 pp. 315-
332 (1998).

Thro, E., The Artificial Intelligence Dictionary, Microtrend Books: San Marcos CA
(1991).

Tully, C. J., "Software Process Models and Iteration", Iteration in the Software Process:
Third International Software Process Workshop, IEEE (1986).

Ullman, D. G., T. G. Dietterich and L. A. Stauffer, "A Model of the Mechanical Design
Process Based on Empirical Data", Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, v2 n1, pp. 33-52 (1988).

Ullman, D. G., "A Taxonomy of Mechanical Design", ASME Design Theory and
Methodology Conference - DTM ’89, Montreal, pp. 23-36 (1989).

136

Urban, G. L. and Hauser, J. R., Design and Marketing of New Products, 2nd edition,
Prentice-Hall: Englewood Cliffs NJ (1993).

Valkenburg, R. and K. Dorst, "The reflective practice of design teams", Design Studies,
v19 pp. 249-271 (1998).

Wagoner, R., "Create a Real Time Company", in article "How to Succeed in 2003",
Business 2.0, v3 n12, pp. 87-98 (2002).

Wallace, K. M. and C. Hales, "Detailed Analysis of an Engineering Design Project",
Proceedings of the International Conference on Engineering Design (ICED 87),
pp. 94-101 (1987).

Wileden, J. C., "Incremental Development and Iteration in the Software Process",
Iteration in the Software Process: Third International Software Process Workshop,
IEEE (1986).

Williams, T., C. Eden, F. Ackermann and A. Tait, "Vicious circles of parallelism",
International Journal of Project Management, v13 n3, pp. 151-155 (1995).

Zar, J. H., Biostatistical Analysis. Third Edition, Prentice-Hall: Englewood Cliffs NJ
(1996).

137

Appendix A

Essay Questions and

Homework Assignment

138

Essay questions

As part of the homework assignment through which data was collected, each subject

was asked to answer several essay questions relating to their experience in solving the

problem. These questions are described below.

Question 1: Design goal / Preconception

In Fall 2001, the first essay question asked whether the student had focused primarily

on distance, primarily on speed, or a combination of both:

When you began designing, did you already know the type of car that you would design,

or did you design the car as you worked with the software?

In Winter 2002, students were asked about whether the student had begun using the

software with a specific design in mind, or had evolved the design entirely during the

session:

What were your objectives as you designed the car? For example, did you focus mainly

on speed, mainly on distance, or a combination? Did you have any other objectives?

Question 2: Description of process

The next question asked for a verbal description of the process by which the design

evolved. Suggested topics included changes in focus from one objective to another,

difficulties encountered with each objective, any sort of design strategy that was

followed, and how the subject arrived at the decision to halt the process:

Describe the steps you followed as you developed your design. For example, maybe you

first focused on one component of the car, and then shifted to another. Which ones, and how?

Did you evolve some sort of design strategy as time went by? How did you know when to

stop?

139

Question 3: Meeting of objectives

Subjects were then asked to comment on how well their final car design meets their

original objectives, and why they felt so:

Do you feel that the final car design meets your design objectives? Why or why not?

Question 4: Self-rating of iterativeness

Subjects were asked to provide a self-rating of the iterative character of their process

using a scale in which 1 represents a linear or noniterative process and 10 represents a

highly iterative process.

People approach design problems in different ways. Some people tend to design in a

linear fashion. They try to make very careful decisions up front, and do relatively little testing

and modification. Others design in an iterative fashion. They spend less time on decisions up

front, and more time trying out many different things, repeating the cycle over and over until

things are just right. Both methods can be very effective. Which fashion do you think

describes your design process the best? Give examples of why you think so. If you had to rate

your design process where 0 is "very linear" and 10 is "very iterative", what number would

you give it?

Question 5: Familiarity with software

Subjects were asked about their degree of familiarity with the software prior to

starting the design process for the homework assignment, and whether or not they felt

that this familiarity or lack of it affected their design process.

How easy was it to use the Virtual Car software? Did it become easier to use over time,

or were you already familiar with it? Do you think it affected your design process?

Homework Assignment

The following pages show these questions in the context of the actual homework

assignment as it was assigned to the subjects in Winter 2002.

140

Virtual Car Homework #2:
Your Personal Design

As a member of a design team, you have a responsibility to bring your best ideas to the table. Four heads
are better than one where creativity is concerned! To get your team started, use Virtual Car Version 4 to
design a car as if you were going to enter it into the Speed Competition. Later, we will run a Virtual Race,
where the car design that you turn in will be loaded into Virtual Car and raced against everyone else’s
design.

Experiment with the shape of the car, the dimensions of the spring, the wheel diameters, and so on, until
you have designed a single car that you think would do pretty well in the Speed Competition.

- Your car has to have a projected distance of at least 15 feet to qualify.
- Your car should have no skid advisory or any other kind of advisory, i.e. the Advisories window should

not be popping up.

 Directions

1. For this assignment you must use Virtual Car Version 4.03a. Follow these directions to get your copy
and to create your Design Portfolio file.

2. When you first start Virtual Car, create a single design portfolio file, and work with only that portfolio
until your design is done.

3. You may complete the design in a single session, or continue designing it over several sessions.
Between sessions, or if you change computers, be sure to keep all of the .vcdp and .vcar files with you,
or you will have to start over.

4. When your design is completely done, use the Print button to print a copy of the Summary Sheet.
5. Finally, copy your design portfolio file (ends with .vcdp) and the file that contains your final design

(ends with .vcar) to a floppy disk or to Dante, so you can turn them in.

Deliverables

When finished, please turn in the following items:

1. Your design portfolio file (such as MyDesignPortfolio.vcdp) by floppy disk or email.
2. The car design file in which you saved your final design (such as MyDesign.vcar) by floppy disk or

email.
3. A printed copy of the Report sheet (use Virtual Car’s Print button, and select Print Report Only).
4. Your answers to the following discussion questions, in memo format:

Questions

1. When you began designing, did you already know the type of car that you would design, or did you
design the car as you worked with the software?

2. Describe the steps you followed as you developed your design. For example, maybe you first focused on
one component of the car, and then shifted to another. Which ones, and how? Did you evolve some
sort of design strategy as time went by? How did you know when to stop?

(continued)

141

3. Do you feel that the final car design meets your design objectives? Why or why not?

4. People approach design problems in different ways. Some people tend to design in a linear fashion. They
try to make very careful decisions up front, and do relatively little testing and modification. Others
design in an iterative fashion. They spend less time on decisions up front, and more time trying out
many different things, repeating the cycle over and over until things are just right. Both methods can be
very effective. Which fashion do you think describes your design process the best? Give examples of
why you think so. If you had to rate your design process where 0 is "very linear" and 10 is "very
iterative", what number would you give it?

5. How easy was it to use the Virtual Car software? Did it become easier to use over time, or were you
already familiar with it? Do you think it affected your design process?

GRADING
Weight: 7.5% of course grade

ITEM PERCENT
Time to 15 ft in Virtual Race 30

Essay questions 40
Design Portfolio (.vcdp) file turned in 15

Car Design (.vcar) file turned in 15
TOTAL 100

142

Appendix B

University of Washington Consent Form

143

UNIVERSITY OF WASHINGTON CONSENT FORM

"Identifying Iterative Design Behavior for Design Process Representation"

Michael J. Safoutin, PhD Candidate, Industrial Engineering, 616-9828
Cynthia J. Atman, Faculty Sponsor, Industrial Engineering, 616-2171

Investigator’s Statement
We are asking you to contribute data to a research study. The purpose of this consent form is to give you the
information you will need to help you decide whether or not to contribute data to the study. Please read the form
carefully. You may ask questions about the purpose of the research, what we would ask you to do, the possible risks
and benefits, your rights as a volunteer, and anything else about the research or this form that is not clear. When all
your questions have been answered, you can decide if you want to contribute data or not. This process is called
’informed consent’.

PURPOSE AND BENEFITS

We want to develop methods to represent differences among design processes that are performed by different designers
while they pursue the same design problem. This research could lead to ways to tell the difference between effective
design strategies and those that are less effective. We hope the results of this study will help us improve design
management and the way we evaluate design education. You may not directly benefit from this research.

PROCEDURES

If you choose to take part in this study, we would like to use components of the Virtual Car project. We would only
like to use some of your work related to this design project. We will not ask you to provide any more work than is
regularly assigned. We would like to analyze the following: (a) the file that you turned in for the individual design
homework, in which you designed your first car using Virtual Car; (b) the essay homework that was collected with this
assignment, and (c) the file that results from the use of Virtual Car by your group during the project. We will only use
group projects for which all members have consented to be in the research. We will replace names with randomly
assigned codes on all of the assignments and projects before they are analyzed for this research. The random number
will not be linked to your name, or the group’s identity.

RISKS, STRESS, OR DISCOMFORT

Some people may feel uncomfortable having their class work included in research, even if it is confidential.

OTHER INFORMATION

Participation in this study is voluntary. Your assignments and projects are initially linked to your name. However,
information that would identify you (like your name or group identification) is replaced with a code before the study
information is analyzed. You can change your mind about taking part in this study before the assignments are coded.
Your instructor will not know if you took part in this study until after the course is over and grades have been assigned.
Your decision will not affect your grade or your standing in the course in any way. If we publish the results of this
study, we will not use your name.

Signature of investigator Printed name Date

SUBJECT’S STATEMENT

___ I wish to participate. The study has been explained to me and I have had an opportunity to ask questions. I give
permission for the instructor to extract data from the homeworks and activities described above and to use the
data in research. I understand that future questions I may have about the research or about my rights as a subject
will be answered by one of the investigators listed above.

___ I do not wish to participate.

Signature of subject Printed name Date

Version of November 12, 2001

144

Appendix C

Timeline Coding Notes

145

Timeline Coding Notes

Prior to analysis, the printed timelines were inspected to identify any interpretive

difficulties and develop a systematic procedure for analysis. Some minor uncertainties

regarding the proper interpretation of plotted symbols and sequences of events were

identified and resolved. Some were traced to minor programming oversights that

occasionally changed the appearance of plotted events. Other uncertainties related to

choosing an appropriate interpretation for certain situations. These uncertainties and their

resolution are described below.

- The last feedback event in a process was not evaluated for parameter identity

because by definition no parameters can be carried over to the next event.

- Multiple edits to the same parameter were counted as a single edit if no feedback

was supplied between each edit.

- A circular symbol representing the application of a parameter change could

occasionally appear out of place. Rather than depicting a single symbol to represent a

single assimilation event, several types of symbols were used to indicate components of a

single event: a narrow rectangle was used to indicate each individual keystroke as the

user typed several characters of a parameter value; a wider rectangle indicated that the

design parameter had been exited (i.e. the typing was finished if keystrokes were

involved), and a circle indicated that the parameter setting had been explicitly "applied"

to the design. The "apply" event was later was found to have little informative value but

was retained in the software. The circle corresponding to the "apply" event could be

generated in three ways: by the designer explicitly pressing a dummy button marked

"Apply", pressing the Return key after typing the parameter value, or activating a

feedback mode. Due to a programming oversight, the circle could also be erroneously

generated in certain circumstances after the designer loaded a car design from disk or

switched from one default design to another. These circles are erroneously issued to

enforce an "apply" event for parameters that were "edited" via the loading of the saved or

146

default car design. Because the Apply event was not relevant in for identifying

assimilation and feedback, these erroneous circles were merely ignored.

- Depending on whether the user tended to use the Tab key or a mouseclick to switch

between parameters, and on whether the Return key or the Apply button was pressed, it

was possible for some symbols to vary slightly in their appearance by having the square

symbol that represents "exit" be missing. This error is of no importance because the

square is not necessary to mark an assimilation event.

- Although loading a new car design could be interpreted as the editing of parameter

values (i.e., the entire set of 24 parameters), they were disregarded because they do not

represent specific parameter choices made by the designer. The true purpose of the

timeline in characterizing a design process is not in documenting aggregate or net

changes to parameter values over time, but in representing localized patterns in the

decision path of the designer with respect to intentional parameter visitations and requests

for feedback.

- A general decision was made to count a parameter edit as valid if either of the

following were true: (a) the designer explicitly performed the parameter change by

editing the parameter directly, or (b) the parameter change was represented in a feedback

event. This means that several potential situations were not counted as parameter

changes: (a) when the designer chose one parameter setting but changed it back to its

original value before getting any feedback, or (b) an event was automatically fired as an

outcome of a different parameter setting, but the parameter setting that caused it to be

changed is itself changed back before feedback is received (which incidentally causes the

other parameter to revert as well). For example, when selecting a four-wheel-drive

configuration for a car that was previously rear-wheel drive, it is usually necessary to

automatically increase the size of the front wheel because the software requires that both

wheels be the same size. This automatically generates an event that indicates a change to

the front wheel size parameter. If the designer switches back to 2WD, the front wheel

registers another automatic edit event as it is automatically returns to its original 2WD-

size. In a few cases, however, the designer immediately switched back to a rear wheel

drive configuration without seeking feedback about the 4WD configuration. In these

147

cases the automatically fired events signifying both changes to the front wheel size were

disregarded because these changes were not explicitly requested by the designer and were

never reflected in a feedback result.

148

Appendix D

Iterativity Ratio

149

Iterativity Ratio: A Measure of Iteration Based on the A-F Timeline

An A-F timeline depicts individual feedback and assimilation events and episodes.

This allows them to be discerned and tallied over the course of the depicted process. In

this and subsequent discussion, the total number of assimilation events in a process will
be referred to as Ea, and the total number of feedback events will be referred to as Ef.

The number of assimilation episodes and feedback episodes in a process will be denoted

by Sa and Sf respectively.

Iterativity Ratio

The A-F timeline suggests that a design process might be characterized in terms of the

relative degree to which it generates feedback as opposed to assimilating information

from the design environment. Processes that are feedback iterative generate feedback

information; it stands to reason, then, that a process that is particularly iterative in this

manner would be expected to proportionately generate feedback. By contrast, a process

that is less feedback iterative would be dominated by assimilation of information from the

design environment rather than from feedback, and would be indicated by a relatively

lower proportion of feedback events.

Imagining a process that is maximally iterative in this regard, every modification to

the design (that is, every assimilation event) would be immediately followed by a

feedback episode. That is, no single parameter setting escapes direct evaluation via

feedback. Under an appropriate metric, which we will refer to as I, such a process would

evaluate to unity. Two examples of such a process are depicted in Figure D.1. In Figure

D.1(a), assimilation and feedback events simply alternate, indicating that every parameter

setting is followed by a feedback event. Figure D.1(b) depicts essentially the same

situation in which every parameter setting is followed by a feedback episode of one or

more feedback events. The mark of a fully iterative process in this regard is in the fact

that every assimilation event is evaluated by one or more feedback events.

150

(a)

(b)

Figure D.1. Processes with I = 1

By contrast, in a minimally iterative process, no assimilation event is ever evaluated

by feedback. An example of this process is depicted in Figure D.2. Under an appropriate

metric I this process would evaluate to zero.

Figure D.2. Process with I = 0

Processes evaluated under this metric would thus approach I = 1 to the degree that

parameter settings tend to be evaluated directly before the next setting is made, or would

approach I = 0 to the degree that parameter settings are made without prior feedback.

A metric that accomplishes this task is simply the ratio of feedback episodes to

assimilation events. This metric will be referred to as iterativity, denoted by the label I:

Iterativity = number of feedback episodes / number of assimilation events

I = Sf / Ea

An iterativity ratio may either be computed for an entire process to characterize its

average emphasis on feedback, or to segments of the process to provide "local" iterativity

measures at various points in the process. The iterativity ratio carries interesting

151

implications that suggest utility of the measure in design research. In a design situation

in which the cost of obtaining feedback is relatively high, one would expect a relatively

low iterativity value because a natural reaction would be to submit more parameter

changes per feedback request. On the other hand, in a design environment in which

synthesis of design decisions is difficult, costly, or unreliable, one might expect the

designer to rely more heavily on analysis through feedback, causing the process to have a

relatively high iterativity value. In an experimental setting, one might explore this

relationship by manipulating these variables, observing their effect on I, and relating I to

design outcome.

152

Appendix E

Computed Version of Feedback Quality Measure

153

A Computed Version of the Feedback Quality Measure

The feedback quality measure may alternatively be applied in a computed rather than

discrete manner, resulting in a single point on a two dimensional continuum rather than a

discrete categorization. This not only accounts for parameter quantity more accurately,

but also allows individual processes to be readily compared to one another on a single

plot.

Each feedback event is given a parameter quantity score and a parameter identity

score. Parameter quantity is computed as the inverse of the number of parameter changes

active in each feedback event, averaged over all events. Parameter identity is computed

as a probability that a parameter edited prior to one feedback event will also be active in

the next event. This is computed by counting the total number of times any parameter

edit is continued across a feedback event and dividing by the total number of parameter

edits.

The computed application results in a parameter quantity score and a parameter

identity score that may be combined into an ordered pair and plotted on a coordinate

plane bounded by (0,0) and (1,1) as depicted in Figure E.1:

Figure E.1. Example plot of computed feedback quality

154

Comparing the Discrete and Computed Applications

It is important to note that one should not expect a direct dimensional correlation

between the discrete and computed depictions for a given process. The discrete

application is a categorization of individual processes within a dimensionless quadrant

system, while the computed application assigns it a value in a continuous numeric space.

For example, a process that is predominantly Class A under the discrete categorization

would not necessarily have a computed value in the upper right quadrant of the

continuous plot. The continuous plot is not a quadrant space; its extents are defined

differently and do not share the same extremes.

Furthermore, while the discrete application assesses parameter quantity by simply

classifying each feedback event as confounded (n > 1) or not confounded (n = 1), the

computed application weights each event according to the actual number of confounding

variables n. Because of this, the computed value could be shifted below or to the left of

the apparent "A" quadrant if a minority of events are extremely confounded Type B or

Type C. For the same reasons, individual processes that are very similar under the

discrete A-D characterization could differ significantly when expressed under the

computed application. Generally, however, processes that are predominantly Class A

should tend toward the upper right area of a group of plotted processes.

Analysis of Computed Feedback Quality

Table E-1 reports computed values for parameter quantity and parameter identity by

subject. These values are placed into scatter plots in Figures E.2 and E.3. Points nearest

the upper-right corner of the plots are associated with the highest quality feedback

because in this region parameter continuity is maximized and parameter confounding is

minimized. The space depicted in this plot is not a quadrant space and should not be

confused with the 2x2 grid of the discrete feedback quality representation.

155

Table E-1. Computed parameter quantity and parameter identity

Fall 2001 Winter 2002
Quantity Identity Subject Quantity Identity

K235 0.90 0.12 A185 0.46 0.88

K238 0.94 0.60 A368 0.32 0.94

K333 0.74 0.21 A446 0.46 0.92

A411 0.92 0.54 A527 0.46 0.93

A433 0.88 0.42 A742 0.28 0.77

B241 0.85 0.45 F234 0.23 0.74

C695 0.61 0.34 F265 0.45 0.88

D477 0.79 0.41 F336 0.95 0.56

W255 0.97 0.56 R246 0.85 0.42

W455 0.71 0.12 R815 0.90 0.45

X250 0.81 0.22 R819 0.41 0.48

X397 0.84 0.28 L258 0.86 0.46

Y318 0.85 0.39 L564 0.92 0.64

Y389 0.85 0.60 U487 0.86 0.40

Y402 0.88 0.40 U750 0.89 0.46

Y418 0.85 0.36 U767 0.95 0.51

Mean 0.84 0.38 G357 0.80 0.27

StDev 0.09 0.16 G365 0.91 0.43

Min 0.09 0.12 G654 0.76 0.52

Max 0.97 0.60 E150 0.93 0.55

E747 0.82 0.16

H45 0.85 0.32

H456 0.89 0.43

H837 0.55 0.34

Mean 0.70 0.56
StDev 0.25 0.23
Min 0.23 0.16
Max 0.95 0.94

156

Figure E.2. Computed feedback quality, Fall 2001

Figure E.3. Computed feedback quality, Winter 2002

157

Comparison: Computed Feedback Quality

The two data sets exhibit quite different mean values for parameter quantity and

parameter identity. The Fall processes on the average score better in parameter quantity

(0.84 vs. 0.70) but lower in parameter identity (0.38 vs. 0.56). The Fall data also exhibits

somewhat tighter standard deviations in both variables (0.09 and 0.16 vs. 0.25 and 0.23).

The relative clustering of points on the scatter plots provide additional evidence of

these differences. While the Fall data is quite well confined to one major cluster

extending upward to the right, the Winter data consists of two distinct clusters and several

outliers. The largest cluster resembles a somewhat tighter version of the Fall cluster, but

the secondary cluster is in a region defined by high parameter identity and low parameter

quantity.

Clustering Methods

The next task is that of grouping processes based on their similarity in terms of the

computed measure. Although this might be done visually by simply looking at the plot, a

number of analytical approaches are available.

In cases like this where there is no preexisting classification scheme that is known to

apply, and no basis to suggest a canonical classification scheme, it is possible to divide

the objects into so-called "natural" categories that are implied by the distribution of the

objects themselves. This is known as cluster analysis. Cluster analysis is a popular

technique for grouping data describing empirical observations, and is used in a broad

variety of fields ranging from biological taxonomy, marketing, and gene analysis [Afifi

and Clark 1984]. In a clustering problem there are two major questions to be answered if

a meaningful grouping is to be found. First, how many clusters should the objects be

clustered into, and second, where should each cluster be centered relative to the others?

One popular criterion for an ideal clustering requires that each object reside in the cluster

whose centroid is nearest the object, and the clusters have been chosen so that the sum,

over all groups, of the squared mean distance of objects in a cluster from the centroid of

their cluster has been minimized [Legendre 2001]. In other words, the number and

158

location of clusters has been selected so that, when every object is assigned to its nearest

cluster, the resultant clusters are as geometrically compact as possible.

K-means clustering is a popular and well established clustering technique [Legendre

and Legendre 1998], [Afifi and Clark 1984]. Many algorithms for k-means clustering

have been described, but all of them operate on the same core principle. The algorithm

first requires that the number of clusters k be specified. This may be specified by the

user, but more commonly the algorithm is run in a loop with a range of k values to be

tried. Next, k bins are established and each object is randomly assigned to a bin to form

an initial set of clusters. The geometric centroid of each random cluster is then computed

(the centroid is simply the mean value of each variable describing the objects in the

cluster). Each object in each cluster is then examined to see if it may be reassigned to a

different cluster whose centroid is geometrically nearer; otherwise it is left in the same

cluster. New centroids are computed, and each object assignment is again examined, in

an iterative cycle. After no more objects may be reassigned, the sum of the squares of the

within-group residuals (i.e. the objective function) is calculated and saved as a measure of

the quality of the clustering.

Unfortunately, partitioning an arbitrary set of objects into groups based on similarity

is an NP-hard problem. Because the initial grouping of objects into clusters is random, a

single run of the algorithm will not necessarily deliver the optimum partitioning that

would minimize the objective function, but may instead converge to a local minimum.

Most k-means algorithms include an outer loop that repeats the entire algorithm many

times with a different random seeding of clusters. After a large number of repetitions, the

clustering result that delivered the lowest value of the objective function is selected as the

most likely optimum clustering.

If the algorithm has been run with several different k values, the optimum k value

may be identified by applying the Calinski-Harabasz criterion [Legendre 2001] and

selecting the k value that maximizes it. This criterion is built into many k-means

algorithms and its background is beyond the scope of this work. A survey of this and

other stopping rules for cluster analysis may be found in Milligan and Cooper [1985].

159

A wide variety of statistical tools are available to perform k-means clustering, ranging

from computational modules for standard statistical packages such as Matlab and

Mathematica, to small standalone programs. A standalone open source statistical

program called K-means [Legendre 2001] was used in the current study.

Clustering Based on Computed Feedback Quality

Individual processes were next clustered in terms of similarity in their computed

feedback quality measures. Clustering was performed by a k-means program [LeGendre

2001] using 100 repetitions of initial random seed clustering while looping through a

range of k values from 12 to 2.

For Fall 2001, the optimum number of clusters k was reported to be between 6 and 8.

Tables E-2 and E-3 depict the optimal clusters for k=6 and k =8, respectively. For Winter

2002, the optimum number of clusters was reported to be between 7 and 9. Tables E-4

and E-5 depict the optimal clusters for k=7 and k = 9, respectively.

Table E-2. Optimal k-means grouping of computed feedback quality, k=6, Fall 2001

1 2 3 4 5 6
K238 A433 K235 X250 W455 C695
A411 B241 W255 X397
Y389 D477

Y318
Y402
Y418
K333

Table E-3. Optimal k-means grouping of computed feedback quality, k=8, Fall 2001

1 2 3 4 5 6 7 8
K238 D477 A433 Y318 K235 K333 W455 NC695
A411 B241 Y402 X250
W255 Y418 X397
Y389

160

Table E-4. Optimal k-means grouping of computed feedback quality, k=7, Winter 2002

1 2 3 4 5 6 7
F336 R246 A185 G357 A742 R819 H837
L564 R815 A368 E747 F234
U767 L258 A446 H245
E150 U487 A527

U750 F265
G365
G654
H456

Table E-5. Optimal k-means grouping of computed feedback quality, k=9, Winter 2002

1 2 3 4 5 6 7 8 9
L564 F336 R246 A185 G357 G654 A742 R819 H837

U767 R815 A368 E747 F234
E150 L258 A446 H245

U487 A527
U750 F265
G365
H456

Because the primary role of a k-means algorithm is simply to place items in clusters,

the clusters that are returned have no particular ordering. The algorithm only assigns an

arbitrary number to each cluster in order to uniquely identify it. For maximum clarity, in

the tables, each cluster was placed in a position roughly corresponding to the position that

their members occupy in Tables 7-3 and 7-4 of Chapter 7.

The result of clustering the computed feedback quality measures did not perfectly

match the clusters that were generated for the discrete feedback quality measures.

Overall, however, the computed feedback quality clusters match quite well with the

discrete feedback quality clusters. In both the Fall and Winter data sets, a visual

inspection reveals that the vast majority of individual processes are either clustered with

the same counterparts in both representations, or their former counterparts have move to

the next adjacent cluster.

161

Differences in Computed Feedback Quality Classification

There are at least two reasons to expect minor disparities between a classification

based on discrete feedback quality and one based on computed feedback quality . First,

the computed application accounts for the actual degree of parameter quantity in each

feedback event rather than simply counting it as confounded or not confounded. This

would tend to cause highly confounded processes, i.e. those that typically submit many

parameters to a feedback event, to place relatively farther left via the computed feedback

quality than it did under the discrete feedback quality . Meanwhile, its peers that tend to

confound with fewer parameters would experience less of this effect. Second, the

computed feedback quality measures have undergone a "natural" clustering rather than

being assigned to canonical categories. Neither the number of clusters nor their

geometric composition would necessarily be identical to the discrete case, leading to

minor variations in cluster membership.

162

Appendix F

Alternative Definitions of a Random Process

163

Alternative Definitions of a Random Process

In the analysis of Chapter 7, a random process was assumed to result in an equal

likelihood of a feedback episode being classified as A, B, C, or D. This would result in

the expected profile shown in Figure F.1.

Figure F.1. Expected profile of a random process, base assumption

If a group of random processes of finite length were to be observed, each individual

process would vary somewhat from the expected distribution, with an equal likelihood of

favoring any one of the quadrants. The distribution of individuals in a randomly

designing group would thus appear as in Table F-1:

Table F-1. Expected distribution of a randomly designing group, base assumption

Is this a reasonable assumption? In defining a random design process, the intent is to

define a process in which a human designer makes all design decisions by random chance

rather than making these decisions with respect to their expected impact on the design

goal. That is, the following decisions are made at random: (a) whether the next event

should be one of assimilation or of feedback, (b) if assimilation, which parameter should

be edited, and (c) if feedback, which functional requirement should be evaluated.

A more detailed examination will reveal that the actual expected result of a random

process depends on the number of design parameters that are available for editing, and on

164

designer awareness of these parameters. Therefore a judgement must be made when

selecting a model for a random process. The issues surrounding this judgement are

outlined in the following discussion.

A random process has clear implications for the parameter quantity metric. Parameter

quantity (that is, the number of parameters submitted per feedback request) determines

the relative share between quadrants A/D (single parameter) and quadrants B/C (multiple

parameter). Figure F.2 depicts the mechanism by which this is determined in a random

process. At any point at which a single parameter has been edited, random chance

dictates that (a) there is a 50% chance that the next event will be another assimilation

event, and (b) there is a 50% chance that it will be a feedback request.

Figure F.2. Effect of random choice on single or multiple parameter quantity

In the former case, the assimilation episode now consists of multiple events, and thus

will be rated either as B or C. In the latter, the assimilation episode terminates with a

single event and will thus be rated either A or D. Thus a random process would produce

50% single parameter feedback events (A and D) and 50% multiple parameter events (B

and C), as depicted in Figure F.3.

165

Figure F.3. Expected parameter quantity for a random process

Now let us consider the relative apportionment between the 50% that is shared

between B and C and the 50% that is shared between A and D. This is determined by the

behavior of the parameter identity metric. Here, the result of a random process will vary

depending on the number of parameters that are eligible for editing. The greater the

number of parameters, the lower the probability that a parameter in one assimilation

episode will be present in the next. Therefore, in a random process, a task with a large

number of parameters tends to weight the expected measure toward the lower quadrants

(C, D) and away from the upper quadrants (A, B). The expected weighting toward (C, D)

may be calculated mathematically based upon the expected number of parameters edited

per assimilation episode (E) and the number of design parameters available (p), as shown

in Figure F.4.

Figure F.4. Expected profile of a random process determined by E and p

166

From this figure it is clear that a design task with a large number of parameters

(indicated by a large value for p) will strongly favor Type C and D patterns, while the

expected share between (A,D) and (B,C) is equal regardless.

What then is an appropriate model for a random process with respect to the Virtual

Car design task? As discussed in Chapter 5, this task has 24 available design parameters.

By simulation, it was determined that the expected number of parameter edits per

assimilation event is two. This leads to an expected distribution among the quadrants of

4.2% A, 4.2% B, 45.8% C, and 45.8% D, as shown in Figure F.5.

Figure F.5. Expected profile of a random process for E = 2 and p = 24

The expected profile 4.2 A / 50 BD / 45.8 C differs substantially from the base

assumption of 25 A / 50 BD / 25 C. As an expected random result, it also differs much

more sharply from the observed processes, most of which are very strong in Type A. If

this model is employed in the analysis of Expectations 1 and 3 in Chapter 7, the case for

both expectations is strengthened due to the sharper variation.

However, to adopt this model for a random process is to assume that the designer is

aware of the existence of all 24 design parameters and considers each in randomly

choosing which to edit. Judging from the activity of the observed subjects, it may be

more reasonable to assume that the designer is not aware of all of the parameters. For

example, on the average, the subjects in the Fall and Winter groups edited only 11 to 12

167

parameters during the course of the process. Because the subjects were relatively new to

the design task, it is possible that they were simply unaware of the existence of some of

the available parameters. A reasonable reaction would be to reduce the assumed number

of parameters to account for designer awareness.

At one extreme, reducing the number of parameters from 24 to 4 reveals (by

simulation) an expected distribution that closely resembles our base assumption of equal

likelihood, as shown in Figure F.6:

Figure F.6. Expected profile of a random process for E = 1.875 and p = 4

In conclusion, any of these alternative versions of a random process would act to

strengthen the case for Expectations 1 and 3 if they were adopted instead of the base

assumption employed in Chapter 7. The base assumption employed in Chapter 7

resembles most closely a design task with four parameters. This assumption is a more

conservative assumption than those that would attempt to account for the actual number

of parameters available in the task that was assigned to the subjects. In particular, the

effect observed in the Fall group becomes significant when one adopts an assumption that

approximately eight or more design parameters are considered.

168

Vita

Michael J. Safoutin received his Master of Science from the University of Illinois at

Urbana-Champaign in 1990. In 1991 he joined the Director’s office of the EPA National

Vehicle and Fuel Emissions Laboratory and became involved with energy modeling and

policy issues related to hybrid and alternative-fuel vehicles. At the University of

Washington he coordinated the design and operation of the Integrated Learning Factory

design education facility, performed research for the Center for Engineering Learning and

Teaching (CELT), and was named the 2003 Outstanding Teaching Assistant for the

College of Engineering in connection with his work with Engineering 100, Introduction

to Engineering Design. In August 2003 he received his Doctor of Philosophy in

Mechanical Engineering, with specialization in Industrial Engineering. His research

interests include design theory and methodology, design management, artificial

intelligence in design, transportation energy utilization, energy and the environment, and

engineering education.

